{"title":"热载荷下模压下填充倒装封装界面角起裂新准则的应用","authors":"Guang-Chao Lyu;Min-Bo Zhou;Xin-Ping Zhang","doi":"10.1109/TDMR.2025.3586592","DOIUrl":null,"url":null,"abstract":"Cracking at corner points or edges of multi-material interfaces has long been a critical reliability concern for engineered components and structures. In particular, accurate prediction of failure risks due to interface crack and delamination in advanced electronic packages is highly demanded for improvement of the reliability and the integrated circuit (IC) product yield. This study proposes a new approach, which combines the asymptotic stress solution at the singularity with the maximum average tangential stress (MATS) and maximum tangential strain (MTSN) criteria, to predict the crack initiation angle and critical fracture conditions. The proposed approach is first validated against the experimental results for silicon/glass anode bonds subjected to biased three-point bending as reported in the literature, demonstrating its accuracy and reliability. Further, and more importantly, the validated criteria are applied to analyze the cracking behavior of a typical molded underfill flip-chip (MUF FC) package under both heating and cooling loads. The predicted crack initiation angles are close to the analytical results derived from the fracture mechanics parameters obtained by finite element analysis. The present study has moved the reliability assessment forward to establish a practical and reliable framework for predicting the crack initiation at the interface corner of the MUF FC package structure, which is also highly anticipated to be used in other advanced electronic packages.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 3","pages":"723-733"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of New Criteria for Predicting Crack Initiation From the Interface Corner in the Molded Underfill Flip-Chip Package Under Thermal Load\",\"authors\":\"Guang-Chao Lyu;Min-Bo Zhou;Xin-Ping Zhang\",\"doi\":\"10.1109/TDMR.2025.3586592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cracking at corner points or edges of multi-material interfaces has long been a critical reliability concern for engineered components and structures. In particular, accurate prediction of failure risks due to interface crack and delamination in advanced electronic packages is highly demanded for improvement of the reliability and the integrated circuit (IC) product yield. This study proposes a new approach, which combines the asymptotic stress solution at the singularity with the maximum average tangential stress (MATS) and maximum tangential strain (MTSN) criteria, to predict the crack initiation angle and critical fracture conditions. The proposed approach is first validated against the experimental results for silicon/glass anode bonds subjected to biased three-point bending as reported in the literature, demonstrating its accuracy and reliability. Further, and more importantly, the validated criteria are applied to analyze the cracking behavior of a typical molded underfill flip-chip (MUF FC) package under both heating and cooling loads. The predicted crack initiation angles are close to the analytical results derived from the fracture mechanics parameters obtained by finite element analysis. The present study has moved the reliability assessment forward to establish a practical and reliable framework for predicting the crack initiation at the interface corner of the MUF FC package structure, which is also highly anticipated to be used in other advanced electronic packages.\",\"PeriodicalId\":448,\"journal\":{\"name\":\"IEEE Transactions on Device and Materials Reliability\",\"volume\":\"25 3\",\"pages\":\"723-733\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Device and Materials Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11072463/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11072463/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Application of New Criteria for Predicting Crack Initiation From the Interface Corner in the Molded Underfill Flip-Chip Package Under Thermal Load
Cracking at corner points or edges of multi-material interfaces has long been a critical reliability concern for engineered components and structures. In particular, accurate prediction of failure risks due to interface crack and delamination in advanced electronic packages is highly demanded for improvement of the reliability and the integrated circuit (IC) product yield. This study proposes a new approach, which combines the asymptotic stress solution at the singularity with the maximum average tangential stress (MATS) and maximum tangential strain (MTSN) criteria, to predict the crack initiation angle and critical fracture conditions. The proposed approach is first validated against the experimental results for silicon/glass anode bonds subjected to biased three-point bending as reported in the literature, demonstrating its accuracy and reliability. Further, and more importantly, the validated criteria are applied to analyze the cracking behavior of a typical molded underfill flip-chip (MUF FC) package under both heating and cooling loads. The predicted crack initiation angles are close to the analytical results derived from the fracture mechanics parameters obtained by finite element analysis. The present study has moved the reliability assessment forward to establish a practical and reliable framework for predicting the crack initiation at the interface corner of the MUF FC package structure, which is also highly anticipated to be used in other advanced electronic packages.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.