Kimia Esmaeilzadeh, Sina Farzi Molan, Farshid Sefat, Samad Nadri
{"title":"自由和封装干细胞皮肤再生。","authors":"Kimia Esmaeilzadeh, Sina Farzi Molan, Farshid Sefat, Samad Nadri","doi":"10.34172/bi.30806","DOIUrl":null,"url":null,"abstract":"<p><p>Optimal skin healing is a sophisticated, coordinated process involving cellular and molecular interactions. Disruptions in this process can result in chronic wounds, necessitating medical intervention, particularly when the damage surpasses the body's regenerative capabilities. In response, novel therapies, especially tissue engineering and stem cell treatments, have been devised to restore tissue architecture and maximum functionality. Stem cells, which can differentiate into diverse cell types and regulate immune responses, hold significant potential for wound healing. Research demonstrates that integrating stem cells with scaffolds expedites this process, with numerous therapies advancing from laboratory studies to clinical trials. This review examines fundamental principles, classifications of stem cells, mechanisms, therapeutic applications, and challenges associated with stem cell encapsulation in wound healing.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"15 ","pages":"30806"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413985/pdf/","citationCount":"0","resultStr":"{\"title\":\"Free and encapsulated stem cells for skin regeneration.\",\"authors\":\"Kimia Esmaeilzadeh, Sina Farzi Molan, Farshid Sefat, Samad Nadri\",\"doi\":\"10.34172/bi.30806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optimal skin healing is a sophisticated, coordinated process involving cellular and molecular interactions. Disruptions in this process can result in chronic wounds, necessitating medical intervention, particularly when the damage surpasses the body's regenerative capabilities. In response, novel therapies, especially tissue engineering and stem cell treatments, have been devised to restore tissue architecture and maximum functionality. Stem cells, which can differentiate into diverse cell types and regulate immune responses, hold significant potential for wound healing. Research demonstrates that integrating stem cells with scaffolds expedites this process, with numerous therapies advancing from laboratory studies to clinical trials. This review examines fundamental principles, classifications of stem cells, mechanisms, therapeutic applications, and challenges associated with stem cell encapsulation in wound healing.</p>\",\"PeriodicalId\":48614,\"journal\":{\"name\":\"Bioimpacts\",\"volume\":\"15 \",\"pages\":\"30806\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413985/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioimpacts\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.34172/bi.30806\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34172/bi.30806","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Free and encapsulated stem cells for skin regeneration.
Optimal skin healing is a sophisticated, coordinated process involving cellular and molecular interactions. Disruptions in this process can result in chronic wounds, necessitating medical intervention, particularly when the damage surpasses the body's regenerative capabilities. In response, novel therapies, especially tissue engineering and stem cell treatments, have been devised to restore tissue architecture and maximum functionality. Stem cells, which can differentiate into diverse cell types and regulate immune responses, hold significant potential for wound healing. Research demonstrates that integrating stem cells with scaffolds expedites this process, with numerous therapies advancing from laboratory studies to clinical trials. This review examines fundamental principles, classifications of stem cells, mechanisms, therapeutic applications, and challenges associated with stem cell encapsulation in wound healing.
BioimpactsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍:
BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.