Olusola Olabanjo, Edwin Aigbokhan, Emmanuel A Akor, David W Kaczka, Mingchao Cai
{"title":"基于猪肺实质变形的有限元模拟。","authors":"Olusola Olabanjo, Edwin Aigbokhan, Emmanuel A Akor, David W Kaczka, Mingchao Cai","doi":"10.1080/10255842.2025.2556314","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate modeling of lung parenchymal biomechanics is critical for understanding respiratory function and improving diagnoses. Traditional hyperelastic models capture tissue deformation but miss essential physiological interactions. This study evaluates an experimentally informed poroelastic model (Birzle's formulation) against hyperelastic-only models within a finite element framework. Using porcine lung geometry and CT-based boundary conditions, we simulate realistic breathing cycles and compare deformation, stress, strain, and volume change. Results show that poroelasticity better reproduces pressure-volume behavior and ventilation distribution, underscoring the importance of fluid-influenced mechanics for robust, clinically relevant lung modeling.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-21"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element simulation of lung parenchyma deformation based on porcine data.\",\"authors\":\"Olusola Olabanjo, Edwin Aigbokhan, Emmanuel A Akor, David W Kaczka, Mingchao Cai\",\"doi\":\"10.1080/10255842.2025.2556314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate modeling of lung parenchymal biomechanics is critical for understanding respiratory function and improving diagnoses. Traditional hyperelastic models capture tissue deformation but miss essential physiological interactions. This study evaluates an experimentally informed poroelastic model (Birzle's formulation) against hyperelastic-only models within a finite element framework. Using porcine lung geometry and CT-based boundary conditions, we simulate realistic breathing cycles and compare deformation, stress, strain, and volume change. Results show that poroelasticity better reproduces pressure-volume behavior and ventilation distribution, underscoring the importance of fluid-influenced mechanics for robust, clinically relevant lung modeling.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-21\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2556314\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2556314","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Finite element simulation of lung parenchyma deformation based on porcine data.
Accurate modeling of lung parenchymal biomechanics is critical for understanding respiratory function and improving diagnoses. Traditional hyperelastic models capture tissue deformation but miss essential physiological interactions. This study evaluates an experimentally informed poroelastic model (Birzle's formulation) against hyperelastic-only models within a finite element framework. Using porcine lung geometry and CT-based boundary conditions, we simulate realistic breathing cycles and compare deformation, stress, strain, and volume change. Results show that poroelasticity better reproduces pressure-volume behavior and ventilation distribution, underscoring the importance of fluid-influenced mechanics for robust, clinically relevant lung modeling.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.