岩土工程中的人工智能转型:进展、挑战和未来推动者

IF 6.2 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Brian Sheil , Christos Anagnostopoulos , Róisín Buckley , Matteo Oryem Ciantia , Eky Febrianto , Jinlong Fu , Zhiwei Gao , Xueyu Geng , Bin Gong , Kevin Hanley , Pengpeng He , Kostas Kolomvatsos , Bruna de C.F.L. Lopes , Jelena Ninic , Marco Previtali , Mohammad Rezania , Agustin Ruiz-Lopez , Jin Sun , Stephen Suryasentana , David Taborda , Pin Zhang
{"title":"岩土工程中的人工智能转型:进展、挑战和未来推动者","authors":"Brian Sheil ,&nbsp;Christos Anagnostopoulos ,&nbsp;Róisín Buckley ,&nbsp;Matteo Oryem Ciantia ,&nbsp;Eky Febrianto ,&nbsp;Jinlong Fu ,&nbsp;Zhiwei Gao ,&nbsp;Xueyu Geng ,&nbsp;Bin Gong ,&nbsp;Kevin Hanley ,&nbsp;Pengpeng He ,&nbsp;Kostas Kolomvatsos ,&nbsp;Bruna de C.F.L. Lopes ,&nbsp;Jelena Ninic ,&nbsp;Marco Previtali ,&nbsp;Mohammad Rezania ,&nbsp;Agustin Ruiz-Lopez ,&nbsp;Jin Sun ,&nbsp;Stephen Suryasentana ,&nbsp;David Taborda ,&nbsp;Pin Zhang","doi":"10.1016/j.compgeo.2025.107604","DOIUrl":null,"url":null,"abstract":"<div><div>Our reliance on the underground space to deliver critical civil engineering infrastructure is growing: to accommodate utility and transport infrastructure in urban environments, to provide innovative housing and commercial solutions, and to support proliferating renewable energy infrastructure, particularly offshore. Artificial intelligence (AI) is arguably the most promising enabler to transform geotechnical engineering by extracting knowledge from data to achieve step-change increases in efficiency, sustainability, reliability and safety. This paper seeks to develop a shared understanding of the state of the art of AI in geotechnics and to explore future developments. By way of example, specific popular use cases in geotechnics are considered to highlight current progress in AI applications including intelligent site investigation, predictive modelling for soil behaviour, and optimisation of design and construction processes. The paper then addresses key research challenges, such as data scarcity and interpretability, and discusses the opportunities that lie ahead in the integration of AI with geotechnical engineering. Finally, priority technological enablers are identified for future transformations.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"189 ","pages":"Article 107604"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence transformations in geotechnics: progress, challenges and future enablers\",\"authors\":\"Brian Sheil ,&nbsp;Christos Anagnostopoulos ,&nbsp;Róisín Buckley ,&nbsp;Matteo Oryem Ciantia ,&nbsp;Eky Febrianto ,&nbsp;Jinlong Fu ,&nbsp;Zhiwei Gao ,&nbsp;Xueyu Geng ,&nbsp;Bin Gong ,&nbsp;Kevin Hanley ,&nbsp;Pengpeng He ,&nbsp;Kostas Kolomvatsos ,&nbsp;Bruna de C.F.L. Lopes ,&nbsp;Jelena Ninic ,&nbsp;Marco Previtali ,&nbsp;Mohammad Rezania ,&nbsp;Agustin Ruiz-Lopez ,&nbsp;Jin Sun ,&nbsp;Stephen Suryasentana ,&nbsp;David Taborda ,&nbsp;Pin Zhang\",\"doi\":\"10.1016/j.compgeo.2025.107604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our reliance on the underground space to deliver critical civil engineering infrastructure is growing: to accommodate utility and transport infrastructure in urban environments, to provide innovative housing and commercial solutions, and to support proliferating renewable energy infrastructure, particularly offshore. Artificial intelligence (AI) is arguably the most promising enabler to transform geotechnical engineering by extracting knowledge from data to achieve step-change increases in efficiency, sustainability, reliability and safety. This paper seeks to develop a shared understanding of the state of the art of AI in geotechnics and to explore future developments. By way of example, specific popular use cases in geotechnics are considered to highlight current progress in AI applications including intelligent site investigation, predictive modelling for soil behaviour, and optimisation of design and construction processes. The paper then addresses key research challenges, such as data scarcity and interpretability, and discusses the opportunities that lie ahead in the integration of AI with geotechnical engineering. Finally, priority technological enablers are identified for future transformations.</div></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":\"189 \",\"pages\":\"Article 107604\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X25005531\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25005531","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们越来越依赖地下空间来提供关键的土木工程基础设施:在城市环境中容纳公用事业和交通基础设施,提供创新的住房和商业解决方案,并支持不断增加的可再生能源基础设施,特别是海上基础设施。人工智能(AI)可以说是最有前途的推动者,它可以从数据中提取知识,从而实现效率、可持续性、可靠性和安全性的逐步提高。本文旨在对人工智能在岩土工程领域的发展现状达成共识,并探讨其未来的发展。举例来说,岩土工程中特定的流行用例被认为突出了人工智能应用的当前进展,包括智能现场调查,土壤行为的预测建模,以及设计和施工过程的优化。然后,本文解决了关键的研究挑战,如数据稀缺性和可解释性,并讨论了人工智能与岩土工程集成的未来机遇。最后,确定未来转换的优先技术使能因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence transformations in geotechnics: progress, challenges and future enablers
Our reliance on the underground space to deliver critical civil engineering infrastructure is growing: to accommodate utility and transport infrastructure in urban environments, to provide innovative housing and commercial solutions, and to support proliferating renewable energy infrastructure, particularly offshore. Artificial intelligence (AI) is arguably the most promising enabler to transform geotechnical engineering by extracting knowledge from data to achieve step-change increases in efficiency, sustainability, reliability and safety. This paper seeks to develop a shared understanding of the state of the art of AI in geotechnics and to explore future developments. By way of example, specific popular use cases in geotechnics are considered to highlight current progress in AI applications including intelligent site investigation, predictive modelling for soil behaviour, and optimisation of design and construction processes. The paper then addresses key research challenges, such as data scarcity and interpretability, and discusses the opportunities that lie ahead in the integration of AI with geotechnical engineering. Finally, priority technological enablers are identified for future transformations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信