Nadine Dersch , Eduardo Perez , Christian Wenger , Mike Schwarz , Benjamin Iniguez , Alexander Kloes
{"title":"基于斯坦福模型的基于氧化物的电阻随机存取存储单元编程的封闭模型","authors":"Nadine Dersch , Eduardo Perez , Christian Wenger , Mike Schwarz , Benjamin Iniguez , Alexander Kloes","doi":"10.1016/j.sse.2025.109238","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a closed-form model for pulse-based programming of oxide-based resistive random access memory devices. The Stanford model is used as a basis and solved in a closed-form for the programming cycle. A constant temperature is set for this solution. With the closed-form model, the state of the device after programming or the required programming settings for achieving a specific device conductance can be calculated directly and quickly. The Stanford model requires time-consuming iterative calculations for high accuracy in transient analysis, which is not necessary for the closed-form model. The closed-form model is scalable across different programming pulse widths and voltages.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"230 ","pages":"Article 109238"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A closed-form model for programming of oxide-based resistive random access memory cells derived from the Stanford model\",\"authors\":\"Nadine Dersch , Eduardo Perez , Christian Wenger , Mike Schwarz , Benjamin Iniguez , Alexander Kloes\",\"doi\":\"10.1016/j.sse.2025.109238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a closed-form model for pulse-based programming of oxide-based resistive random access memory devices. The Stanford model is used as a basis and solved in a closed-form for the programming cycle. A constant temperature is set for this solution. With the closed-form model, the state of the device after programming or the required programming settings for achieving a specific device conductance can be calculated directly and quickly. The Stanford model requires time-consuming iterative calculations for high accuracy in transient analysis, which is not necessary for the closed-form model. The closed-form model is scalable across different programming pulse widths and voltages.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"230 \",\"pages\":\"Article 109238\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110125001832\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001832","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A closed-form model for programming of oxide-based resistive random access memory cells derived from the Stanford model
This paper presents a closed-form model for pulse-based programming of oxide-based resistive random access memory devices. The Stanford model is used as a basis and solved in a closed-form for the programming cycle. A constant temperature is set for this solution. With the closed-form model, the state of the device after programming or the required programming settings for achieving a specific device conductance can be calculated directly and quickly. The Stanford model requires time-consuming iterative calculations for high accuracy in transient analysis, which is not necessary for the closed-form model. The closed-form model is scalable across different programming pulse widths and voltages.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.