Daisy Sproviero, César Payán-Gómez, Chiara Milanese, Sander Barnhoorn, Shixiang Sun, Akos Gyenis, Domenico Delia, Tammaryn Lashley, Jan H. J. Hoeijmakers, Jan Vijg, Pier G. Mastroberardino
{"title":"帕金森病患者的血液DNA损伤特征与疾病进展有关。","authors":"Daisy Sproviero, César Payán-Gómez, Chiara Milanese, Sander Barnhoorn, Shixiang Sun, Akos Gyenis, Domenico Delia, Tammaryn Lashley, Jan H. J. Hoeijmakers, Jan Vijg, Pier G. Mastroberardino","doi":"10.1038/s43587-025-00926-x","DOIUrl":null,"url":null,"abstract":"Aging is the main risk factor for Parkinson’s disease (PD), yet our understanding of how age-related mechanisms contribute to PD pathophysiology remains limited. We conducted a longitudinal analysis of blood samples from the Parkinson’s Progression Markers Initiative cohort to investigate DNA damage in PD. Patients with PD exhibited disrupted DNA repair pathways and biased suppression of longer transcripts, indicating age-related, transcription-stalling DNA damage. Notably, at the intake visit, this DNA damage signature was detected only in patients with more severe progression of motor symptoms over 3 years, suggesting its potential as a predictor of disease severity. We validated this signature in independent PD cohorts and confirmed increased DNA damage in peripheral blood cells and dopamine neurons of the substantia nigra pars compacta in postmortem PD brains. Our study sheds light on an aging-related mechanism in PD pathogenesis and identifies potential markers of disease progression, providing a diagnostic platform to prognosticate disease progression. Aging is a risk factor for Parkinson’s disease; however, how DNA damage accumulation, a hallmark of aging, contributes to its pathophysiology remains incompletely understood. Here, the authors identify a blood-based DNA damage signature that is associated with disease progression in patients with Parkinson’s disease.","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":"5 9","pages":"1844-1861"},"PeriodicalIF":19.4000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12443628/pdf/","citationCount":"0","resultStr":"{\"title\":\"A blood-based DNA damage signature in patients with Parkinson’s disease is associated with disease progression\",\"authors\":\"Daisy Sproviero, César Payán-Gómez, Chiara Milanese, Sander Barnhoorn, Shixiang Sun, Akos Gyenis, Domenico Delia, Tammaryn Lashley, Jan H. J. Hoeijmakers, Jan Vijg, Pier G. Mastroberardino\",\"doi\":\"10.1038/s43587-025-00926-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aging is the main risk factor for Parkinson’s disease (PD), yet our understanding of how age-related mechanisms contribute to PD pathophysiology remains limited. We conducted a longitudinal analysis of blood samples from the Parkinson’s Progression Markers Initiative cohort to investigate DNA damage in PD. Patients with PD exhibited disrupted DNA repair pathways and biased suppression of longer transcripts, indicating age-related, transcription-stalling DNA damage. Notably, at the intake visit, this DNA damage signature was detected only in patients with more severe progression of motor symptoms over 3 years, suggesting its potential as a predictor of disease severity. We validated this signature in independent PD cohorts and confirmed increased DNA damage in peripheral blood cells and dopamine neurons of the substantia nigra pars compacta in postmortem PD brains. Our study sheds light on an aging-related mechanism in PD pathogenesis and identifies potential markers of disease progression, providing a diagnostic platform to prognosticate disease progression. Aging is a risk factor for Parkinson’s disease; however, how DNA damage accumulation, a hallmark of aging, contributes to its pathophysiology remains incompletely understood. Here, the authors identify a blood-based DNA damage signature that is associated with disease progression in patients with Parkinson’s disease.\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\"5 9\",\"pages\":\"1844-1861\"},\"PeriodicalIF\":19.4000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12443628/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43587-025-00926-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43587-025-00926-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A blood-based DNA damage signature in patients with Parkinson’s disease is associated with disease progression
Aging is the main risk factor for Parkinson’s disease (PD), yet our understanding of how age-related mechanisms contribute to PD pathophysiology remains limited. We conducted a longitudinal analysis of blood samples from the Parkinson’s Progression Markers Initiative cohort to investigate DNA damage in PD. Patients with PD exhibited disrupted DNA repair pathways and biased suppression of longer transcripts, indicating age-related, transcription-stalling DNA damage. Notably, at the intake visit, this DNA damage signature was detected only in patients with more severe progression of motor symptoms over 3 years, suggesting its potential as a predictor of disease severity. We validated this signature in independent PD cohorts and confirmed increased DNA damage in peripheral blood cells and dopamine neurons of the substantia nigra pars compacta in postmortem PD brains. Our study sheds light on an aging-related mechanism in PD pathogenesis and identifies potential markers of disease progression, providing a diagnostic platform to prognosticate disease progression. Aging is a risk factor for Parkinson’s disease; however, how DNA damage accumulation, a hallmark of aging, contributes to its pathophysiology remains incompletely understood. Here, the authors identify a blood-based DNA damage signature that is associated with disease progression in patients with Parkinson’s disease.