Qian Yang;Shailesh N. Joshi;Raymond Viviano;Hiroshi Ukegawa;Krishna R. Pattipati
{"title":"基于距离的健康指示器及其在电力电子设备故障预测交互多模型中的应用","authors":"Qian Yang;Shailesh N. Joshi;Raymond Viviano;Hiroshi Ukegawa;Krishna R. Pattipati","doi":"10.1109/TR.2025.3526594","DOIUrl":null,"url":null,"abstract":"Power electronic (PE) reliability is critical to electric vehicle performance and safety. Thus, it is vital to predict the remaining useful life (RUL) of components that are subject to predictable degradation. Here, we propose a RUL estimation framework for PE components. The framework has two consecutive phases: Generation of distance-based health indicators through an unsupervised learning procedure, such as self-organizing map (SOM) or K-means clustering, and subsequent deployment of interacting multiple model (IMM) that integrate linear and extended Kalman filters with varied degradation profiles to forecast future values of the indicator and RUL. Specifically, a nominal SOM or K-means model is learned, using the <sc>on</small>-state median signal data from the PE component. The indicator is then calculated by measuring the distance between the test vector and the cluster center. To adaptively track the health indicator and its rate of change, accounting for the noise intrinsic to degradation processes, various degradation profiles, and the measurement system, the IMMs are applied. The RUL is evaluated as the difference between a predefined threshold and the health indicator estimate, divided by the present degradation rate. Validation of the framework involved accelerated aging experimental datasets, encompassing both low-frequency and high-frequency switching scenarios. The results reveal the framework's versatility and potential for implementation across diverse applications.","PeriodicalId":56305,"journal":{"name":"IEEE Transactions on Reliability","volume":"74 3","pages":"4032-4046"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Distance-Based Health Indicator and Its Use in an Interacting Multiple Model for Failure Prognosis in Power Electronic Devices\",\"authors\":\"Qian Yang;Shailesh N. Joshi;Raymond Viviano;Hiroshi Ukegawa;Krishna R. Pattipati\",\"doi\":\"10.1109/TR.2025.3526594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power electronic (PE) reliability is critical to electric vehicle performance and safety. Thus, it is vital to predict the remaining useful life (RUL) of components that are subject to predictable degradation. Here, we propose a RUL estimation framework for PE components. The framework has two consecutive phases: Generation of distance-based health indicators through an unsupervised learning procedure, such as self-organizing map (SOM) or K-means clustering, and subsequent deployment of interacting multiple model (IMM) that integrate linear and extended Kalman filters with varied degradation profiles to forecast future values of the indicator and RUL. Specifically, a nominal SOM or K-means model is learned, using the <sc>on</small>-state median signal data from the PE component. The indicator is then calculated by measuring the distance between the test vector and the cluster center. To adaptively track the health indicator and its rate of change, accounting for the noise intrinsic to degradation processes, various degradation profiles, and the measurement system, the IMMs are applied. The RUL is evaluated as the difference between a predefined threshold and the health indicator estimate, divided by the present degradation rate. Validation of the framework involved accelerated aging experimental datasets, encompassing both low-frequency and high-frequency switching scenarios. The results reveal the framework's versatility and potential for implementation across diverse applications.\",\"PeriodicalId\":56305,\"journal\":{\"name\":\"IEEE Transactions on Reliability\",\"volume\":\"74 3\",\"pages\":\"4032-4046\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Reliability\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10869836/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Reliability","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10869836/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Distance-Based Health Indicator and Its Use in an Interacting Multiple Model for Failure Prognosis in Power Electronic Devices
Power electronic (PE) reliability is critical to electric vehicle performance and safety. Thus, it is vital to predict the remaining useful life (RUL) of components that are subject to predictable degradation. Here, we propose a RUL estimation framework for PE components. The framework has two consecutive phases: Generation of distance-based health indicators through an unsupervised learning procedure, such as self-organizing map (SOM) or K-means clustering, and subsequent deployment of interacting multiple model (IMM) that integrate linear and extended Kalman filters with varied degradation profiles to forecast future values of the indicator and RUL. Specifically, a nominal SOM or K-means model is learned, using the on-state median signal data from the PE component. The indicator is then calculated by measuring the distance between the test vector and the cluster center. To adaptively track the health indicator and its rate of change, accounting for the noise intrinsic to degradation processes, various degradation profiles, and the measurement system, the IMMs are applied. The RUL is evaluated as the difference between a predefined threshold and the health indicator estimate, divided by the present degradation rate. Validation of the framework involved accelerated aging experimental datasets, encompassing both low-frequency and high-frequency switching scenarios. The results reveal the framework's versatility and potential for implementation across diverse applications.
期刊介绍:
IEEE Transactions on Reliability is a refereed journal for the reliability and allied disciplines including, but not limited to, maintainability, physics of failure, life testing, prognostics, design and manufacture for reliability, reliability for systems of systems, network availability, mission success, warranty, safety, and various measures of effectiveness. Topics eligible for publication range from hardware to software, from materials to systems, from consumer and industrial devices to manufacturing plants, from individual items to networks, from techniques for making things better to ways of predicting and measuring behavior in the field. As an engineering subject that supports new and existing technologies, we constantly expand into new areas of the assurance sciences.