16 nm p- finet技术中d波段乘9倍频倍频链的设计及波形建模

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Runzhou Chen;Hao-Yu Chien;Mau-Chung Frank Chang
{"title":"16 nm p- finet技术中d波段乘9倍频倍频链的设计及波形建模","authors":"Runzhou Chen;Hao-Yu Chien;Mau-Chung Frank Chang","doi":"10.1109/TTHZ.2025.3588765","DOIUrl":null,"url":null,"abstract":"This work presents the design and analysis of a compact D-band × 9 frequency multiplier chain, using taiwan semiconductor manufacturing company limited (TSMC) 16 nm technology with the radio frequency (RF) p-FinFET device. The unique high <inline-formula><tex-math>$\\mathbf {f_{\\max}}$</tex-math></inline-formula> feature of the p-FinFET device sets the foundations for this design. To accommodate the short-channel effects in the fin field-effect transistor (FinFET) devices, a time domain double-clipped piece-wise linear model is proposed to analyze the current waveform of the frequency tripler, which proves to be accurate in predicting the harmonic generation behavior of FinFET by comparing with the simulation. The optimal load impedance and the matching conditions at 3f<inline-formula><tex-math>$_{0}$</tex-math></inline-formula> are also examined to improve the efficiency. The frequency multiplier chain consists of an inductor-less active balun for single-to-differential conversion and mismatch compensation, two frequency tripler cells, an interstage amplifier, and a two-stage driving amplifier at the output. The proposed model was applied to find the optimal bias condition when designing the frequency triplers. The proposed multiplier was measured under two bias conditions; the first achieves a conversion gain of 1.6 dB, a <inline-formula><tex-math>$\\mathbf {P_{sat}}$</tex-math></inline-formula> of -2.8 dBm and a harmonic rejection ratio of 44 dBc while consuming 58 mW dc power. The second bias point achieves a higher conversion gain and <inline-formula><tex-math>$\\mathbf {P_{sat}}$</tex-math></inline-formula> at 4.7 and 1.8 dBm with 102 mW dc power. The multiplier chip occupies a core area of only 0.068 <inline-formula><tex-math>$\\mathbf {mm^{2}}$</tex-math></inline-formula> and the phase noise degradation is 19.8 dB at 1-MHz frequency offset.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"15 5","pages":"864-876"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a D-Band Multiply-by-9 Frequency Multiplier Chain in 16 nm p-FinFET Technology With Waveform Modeling\",\"authors\":\"Runzhou Chen;Hao-Yu Chien;Mau-Chung Frank Chang\",\"doi\":\"10.1109/TTHZ.2025.3588765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the design and analysis of a compact D-band × 9 frequency multiplier chain, using taiwan semiconductor manufacturing company limited (TSMC) 16 nm technology with the radio frequency (RF) p-FinFET device. The unique high <inline-formula><tex-math>$\\\\mathbf {f_{\\\\max}}$</tex-math></inline-formula> feature of the p-FinFET device sets the foundations for this design. To accommodate the short-channel effects in the fin field-effect transistor (FinFET) devices, a time domain double-clipped piece-wise linear model is proposed to analyze the current waveform of the frequency tripler, which proves to be accurate in predicting the harmonic generation behavior of FinFET by comparing with the simulation. The optimal load impedance and the matching conditions at 3f<inline-formula><tex-math>$_{0}$</tex-math></inline-formula> are also examined to improve the efficiency. The frequency multiplier chain consists of an inductor-less active balun for single-to-differential conversion and mismatch compensation, two frequency tripler cells, an interstage amplifier, and a two-stage driving amplifier at the output. The proposed model was applied to find the optimal bias condition when designing the frequency triplers. The proposed multiplier was measured under two bias conditions; the first achieves a conversion gain of 1.6 dB, a <inline-formula><tex-math>$\\\\mathbf {P_{sat}}$</tex-math></inline-formula> of -2.8 dBm and a harmonic rejection ratio of 44 dBc while consuming 58 mW dc power. The second bias point achieves a higher conversion gain and <inline-formula><tex-math>$\\\\mathbf {P_{sat}}$</tex-math></inline-formula> at 4.7 and 1.8 dBm with 102 mW dc power. The multiplier chip occupies a core area of only 0.068 <inline-formula><tex-math>$\\\\mathbf {mm^{2}}$</tex-math></inline-formula> and the phase noise degradation is 19.8 dB at 1-MHz frequency offset.\",\"PeriodicalId\":13258,\"journal\":{\"name\":\"IEEE Transactions on Terahertz Science and Technology\",\"volume\":\"15 5\",\"pages\":\"864-876\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Terahertz Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11080075/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11080075/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用台积电(TSMC)的16nm技术,设计并分析了一种紧凑的d波段× 9倍频链,用于射频(RF) p-FinFET器件。p-FinFET器件独特的高$\mathbf {f_{\max}}$特性为本设计奠定了基础。为了适应fin - field-effect transistor (FinFET)器件中的短通道效应,提出了一种时域双箝位分段线性模型来分析三倍频器件的电流波形,通过与仿真结果的比较,证明了该模型能够准确地预测FinFET的谐波产生行为。为了提高效率,还研究了最优负载阻抗和3f_{0}$的匹配条件。该倍频链由一个用于单差转换和失配补偿的无电感有源平衡器、两个三倍频单元、一个级间放大器和输出端的两级驱动放大器组成。在设计三倍频器时,将该模型应用于寻找最优偏置条件。在两种偏置条件下测量了所提出的乘数;前者的转换增益为1.6 dB, $\mathbf {P_{sat}}$为-2.8 dBm,谐波抑制比为44 dBc,同时消耗58 mW直流功率。第二个偏置点在4.7和1.8 dBm, 102 mW直流功率下实现更高的转换增益和$\mathbf {P_{sat}}$。该乘法器芯片的核心面积仅为0.068 $\mathbf {mm^{2}}$,在1 mhz频偏下相位噪声衰减为19.8 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a D-Band Multiply-by-9 Frequency Multiplier Chain in 16 nm p-FinFET Technology With Waveform Modeling
This work presents the design and analysis of a compact D-band × 9 frequency multiplier chain, using taiwan semiconductor manufacturing company limited (TSMC) 16 nm technology with the radio frequency (RF) p-FinFET device. The unique high $\mathbf {f_{\max}}$ feature of the p-FinFET device sets the foundations for this design. To accommodate the short-channel effects in the fin field-effect transistor (FinFET) devices, a time domain double-clipped piece-wise linear model is proposed to analyze the current waveform of the frequency tripler, which proves to be accurate in predicting the harmonic generation behavior of FinFET by comparing with the simulation. The optimal load impedance and the matching conditions at 3f$_{0}$ are also examined to improve the efficiency. The frequency multiplier chain consists of an inductor-less active balun for single-to-differential conversion and mismatch compensation, two frequency tripler cells, an interstage amplifier, and a two-stage driving amplifier at the output. The proposed model was applied to find the optimal bias condition when designing the frequency triplers. The proposed multiplier was measured under two bias conditions; the first achieves a conversion gain of 1.6 dB, a $\mathbf {P_{sat}}$ of -2.8 dBm and a harmonic rejection ratio of 44 dBc while consuming 58 mW dc power. The second bias point achieves a higher conversion gain and $\mathbf {P_{sat}}$ at 4.7 and 1.8 dBm with 102 mW dc power. The multiplier chip occupies a core area of only 0.068 $\mathbf {mm^{2}}$ and the phase noise degradation is 19.8 dB at 1-MHz frequency offset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Terahertz Science and Technology
IEEE Transactions on Terahertz Science and Technology ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
7.10
自引率
9.40%
发文量
102
期刊介绍: IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信