{"title":"常规多处理器系统笛卡儿幂的分量(额外)边连通性注释","authors":"Liqiong Xu;Shuming Zhou","doi":"10.1109/TR.2025.3540068","DOIUrl":null,"url":null,"abstract":"Reliability assessment of multiprocessor systems presents the theoretical foundation for the layout and optimization of multiprocessor systems. The <inline-formula><tex-math>$h$</tex-math></inline-formula>-extra edge-connectivity <inline-formula><tex-math>$\\lambda _{h}$</tex-math></inline-formula> and the <inline-formula><tex-math>$k$</tex-math></inline-formula>-component edge-connectivity <inline-formula><tex-math>$c\\lambda _{k}$</tex-math></inline-formula>, as extensions of the classical edge connectivity, are two precise metrics for the measurement of the reliability of multiprocessor systems. For multiprocessor systems, determining <inline-formula><tex-math>$c\\lambda _{k}$</tex-math></inline-formula> and <inline-formula><tex-math>$\\lambda _{k}$</tex-math></inline-formula> of a large <inline-formula><tex-math>$k$</tex-math></inline-formula> is still difficult. Let <inline-formula><tex-math>$\\delta _{G}(0)=0$</tex-math></inline-formula> and <inline-formula><tex-math>$\\delta _{G}(i)=\\frac{1}{2}(\\text{ex}_{i+1}(G)-\\text{ex}_{i}(G))$</tex-math></inline-formula> for <inline-formula><tex-math>$i\\in \\lbrace 1, \\ldots, |G|-1\\rbrace$</tex-math></inline-formula>, where <inline-formula><tex-math>$\\text{ex}_{i}(G)={\\mathrm{max}}\\lbrace 2|E(G[S])|: S\\subseteq V(G), |S|=i \\rbrace$</tex-math></inline-formula>. In this article, we obtain <inline-formula><tex-math>$c\\lambda _{k}$</tex-math></inline-formula> and <inline-formula><tex-math>$\\lambda _{h}$</tex-math></inline-formula> of the Cartesian powers of the <inline-formula><tex-math>$d$</tex-math></inline-formula>-regular graphs for which the lexicographic order yields an optimal order and <inline-formula><tex-math>$\\delta _{G}(i)\\leq \\frac{d}{2}$</tex-math></inline-formula> for <inline-formula><tex-math>$i=0, 1, \\ldots, \\lfloor \\frac{|G|-1}{2}\\rfloor$</tex-math></inline-formula>. Our result improves some previous results about <inline-formula><tex-math>$c\\lambda _{k}$</tex-math></inline-formula> of Hamming graphs by Yang et al. (2023), and <inline-formula><tex-math>$\\lambda _{h}$</tex-math></inline-formula> of the Cartesian powers of the complete graph <inline-formula><tex-math>$K_{4}$</tex-math></inline-formula> by Tian et al. (2022).","PeriodicalId":56305,"journal":{"name":"IEEE Transactions on Reliability","volume":"74 3","pages":"4245-4252"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on the Component (Extra) Edge Connectivity of the Cartesian Powers of Regular Multiprocessor Systems\",\"authors\":\"Liqiong Xu;Shuming Zhou\",\"doi\":\"10.1109/TR.2025.3540068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliability assessment of multiprocessor systems presents the theoretical foundation for the layout and optimization of multiprocessor systems. The <inline-formula><tex-math>$h$</tex-math></inline-formula>-extra edge-connectivity <inline-formula><tex-math>$\\\\lambda _{h}$</tex-math></inline-formula> and the <inline-formula><tex-math>$k$</tex-math></inline-formula>-component edge-connectivity <inline-formula><tex-math>$c\\\\lambda _{k}$</tex-math></inline-formula>, as extensions of the classical edge connectivity, are two precise metrics for the measurement of the reliability of multiprocessor systems. For multiprocessor systems, determining <inline-formula><tex-math>$c\\\\lambda _{k}$</tex-math></inline-formula> and <inline-formula><tex-math>$\\\\lambda _{k}$</tex-math></inline-formula> of a large <inline-formula><tex-math>$k$</tex-math></inline-formula> is still difficult. Let <inline-formula><tex-math>$\\\\delta _{G}(0)=0$</tex-math></inline-formula> and <inline-formula><tex-math>$\\\\delta _{G}(i)=\\\\frac{1}{2}(\\\\text{ex}_{i+1}(G)-\\\\text{ex}_{i}(G))$</tex-math></inline-formula> for <inline-formula><tex-math>$i\\\\in \\\\lbrace 1, \\\\ldots, |G|-1\\\\rbrace$</tex-math></inline-formula>, where <inline-formula><tex-math>$\\\\text{ex}_{i}(G)={\\\\mathrm{max}}\\\\lbrace 2|E(G[S])|: S\\\\subseteq V(G), |S|=i \\\\rbrace$</tex-math></inline-formula>. In this article, we obtain <inline-formula><tex-math>$c\\\\lambda _{k}$</tex-math></inline-formula> and <inline-formula><tex-math>$\\\\lambda _{h}$</tex-math></inline-formula> of the Cartesian powers of the <inline-formula><tex-math>$d$</tex-math></inline-formula>-regular graphs for which the lexicographic order yields an optimal order and <inline-formula><tex-math>$\\\\delta _{G}(i)\\\\leq \\\\frac{d}{2}$</tex-math></inline-formula> for <inline-formula><tex-math>$i=0, 1, \\\\ldots, \\\\lfloor \\\\frac{|G|-1}{2}\\\\rfloor$</tex-math></inline-formula>. Our result improves some previous results about <inline-formula><tex-math>$c\\\\lambda _{k}$</tex-math></inline-formula> of Hamming graphs by Yang et al. (2023), and <inline-formula><tex-math>$\\\\lambda _{h}$</tex-math></inline-formula> of the Cartesian powers of the complete graph <inline-formula><tex-math>$K_{4}$</tex-math></inline-formula> by Tian et al. (2022).\",\"PeriodicalId\":56305,\"journal\":{\"name\":\"IEEE Transactions on Reliability\",\"volume\":\"74 3\",\"pages\":\"4245-4252\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Reliability\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10904846/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Reliability","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10904846/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Note on the Component (Extra) Edge Connectivity of the Cartesian Powers of Regular Multiprocessor Systems
Reliability assessment of multiprocessor systems presents the theoretical foundation for the layout and optimization of multiprocessor systems. The $h$-extra edge-connectivity $\lambda _{h}$ and the $k$-component edge-connectivity $c\lambda _{k}$, as extensions of the classical edge connectivity, are two precise metrics for the measurement of the reliability of multiprocessor systems. For multiprocessor systems, determining $c\lambda _{k}$ and $\lambda _{k}$ of a large $k$ is still difficult. Let $\delta _{G}(0)=0$ and $\delta _{G}(i)=\frac{1}{2}(\text{ex}_{i+1}(G)-\text{ex}_{i}(G))$ for $i\in \lbrace 1, \ldots, |G|-1\rbrace$, where $\text{ex}_{i}(G)={\mathrm{max}}\lbrace 2|E(G[S])|: S\subseteq V(G), |S|=i \rbrace$. In this article, we obtain $c\lambda _{k}$ and $\lambda _{h}$ of the Cartesian powers of the $d$-regular graphs for which the lexicographic order yields an optimal order and $\delta _{G}(i)\leq \frac{d}{2}$ for $i=0, 1, \ldots, \lfloor \frac{|G|-1}{2}\rfloor$. Our result improves some previous results about $c\lambda _{k}$ of Hamming graphs by Yang et al. (2023), and $\lambda _{h}$ of the Cartesian powers of the complete graph $K_{4}$ by Tian et al. (2022).
期刊介绍:
IEEE Transactions on Reliability is a refereed journal for the reliability and allied disciplines including, but not limited to, maintainability, physics of failure, life testing, prognostics, design and manufacture for reliability, reliability for systems of systems, network availability, mission success, warranty, safety, and various measures of effectiveness. Topics eligible for publication range from hardware to software, from materials to systems, from consumer and industrial devices to manufacturing plants, from individual items to networks, from techniques for making things better to ways of predicting and measuring behavior in the field. As an engineering subject that supports new and existing technologies, we constantly expand into new areas of the assurance sciences.