在农业科学数据中应用梯度检验评估离散时间过渡模型的概率同质性。

IF 1.1 4区 数学 Q2 STATISTICS & PROBABILITY
Journal of Applied Statistics Pub Date : 2025-02-02 eCollection Date: 2025-01-01 DOI:10.1080/02664763.2025.2457008
Laura Vicuña Torres de Paula, Idemauro Antonio Rodrigues de Lara, Cesar Auguto Taconeli, Carolina Reigada, Rafael de Andrade Moral
{"title":"在农业科学数据中应用梯度检验评估离散时间过渡模型的概率同质性。","authors":"Laura Vicuña Torres de Paula, Idemauro Antonio Rodrigues de Lara, Cesar Auguto Taconeli, Carolina Reigada, Rafael de Andrade Moral","doi":"10.1080/02664763.2025.2457008","DOIUrl":null,"url":null,"abstract":"<p><p>Longitudinal studies in discrete or continuous time involving categorical data are common in agricultural sciences. Transition models can be used as a means to analyse the resulting data, especially when the aim is to describe category changes over time, as well as to accommodate covariates due to experimental design. Here we focus on discrete-time models, for which it is critical to assess whether the underlying process is stationary or not. Tests based on likelihood procedures are very useful, and here we propose the Gradient test to assess stationary, or homogeneity of transition probabilities. We carried out simulation studies to evaluate the performance of the proposed test, which indicated a good performance regarding type-I error and power when compared to other classical tests available in the literature. As motivation we present two studies with agricultural data, the first one applied to entomology with nominal responses and the second application refers to the degree of injury in pigs. Using our proposed test, stationarity and non-stationarity were verified respectively in the applications. Since the gradient test to assess stationarity has a simplified structure when compared to other tests, it is therefore a useful alternative when carrying out inference in these types of models.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 11","pages":"2172-2190"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404091/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gradient test to assess homogeneity of probabilities in discrete-time transition models with application in agricultural science data.\",\"authors\":\"Laura Vicuña Torres de Paula, Idemauro Antonio Rodrigues de Lara, Cesar Auguto Taconeli, Carolina Reigada, Rafael de Andrade Moral\",\"doi\":\"10.1080/02664763.2025.2457008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Longitudinal studies in discrete or continuous time involving categorical data are common in agricultural sciences. Transition models can be used as a means to analyse the resulting data, especially when the aim is to describe category changes over time, as well as to accommodate covariates due to experimental design. Here we focus on discrete-time models, for which it is critical to assess whether the underlying process is stationary or not. Tests based on likelihood procedures are very useful, and here we propose the Gradient test to assess stationary, or homogeneity of transition probabilities. We carried out simulation studies to evaluate the performance of the proposed test, which indicated a good performance regarding type-I error and power when compared to other classical tests available in the literature. As motivation we present two studies with agricultural data, the first one applied to entomology with nominal responses and the second application refers to the degree of injury in pigs. Using our proposed test, stationarity and non-stationarity were verified respectively in the applications. Since the gradient test to assess stationarity has a simplified structure when compared to other tests, it is therefore a useful alternative when carrying out inference in these types of models.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"52 11\",\"pages\":\"2172-2190\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404091/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2025.2457008\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2025.2457008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

涉及分类数据的离散或连续时间的纵向研究在农业科学中很常见。过渡模型可以用作分析结果数据的一种手段,特别是当目的是描述随时间的类别变化时,以及由于实验设计而容纳协变量。在这里,我们将重点放在离散时间模型上,对于离散时间模型来说,评估潜在过程是否平稳至关重要。基于似然程序的测试非常有用,在这里我们提出梯度测试来评估转移概率的平稳性或同质性。我们进行了仿真研究来评估所提出的测试的性能,与文献中可用的其他经典测试相比,该测试在i型误差和功率方面表现良好。作为动机,我们提出了两项农业数据研究,第一个应用于昆虫学,具有名义响应,第二个应用涉及猪的伤害程度。利用本文提出的测试方法,分别在应用中验证了平稳性和非平稳性。由于与其他测试相比,评估平稳性的梯度测试具有简化的结构,因此在这些类型的模型中进行推理时,它是一个有用的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient test to assess homogeneity of probabilities in discrete-time transition models with application in agricultural science data.

Longitudinal studies in discrete or continuous time involving categorical data are common in agricultural sciences. Transition models can be used as a means to analyse the resulting data, especially when the aim is to describe category changes over time, as well as to accommodate covariates due to experimental design. Here we focus on discrete-time models, for which it is critical to assess whether the underlying process is stationary or not. Tests based on likelihood procedures are very useful, and here we propose the Gradient test to assess stationary, or homogeneity of transition probabilities. We carried out simulation studies to evaluate the performance of the proposed test, which indicated a good performance regarding type-I error and power when compared to other classical tests available in the literature. As motivation we present two studies with agricultural data, the first one applied to entomology with nominal responses and the second application refers to the degree of injury in pigs. Using our proposed test, stationarity and non-stationarity were verified respectively in the applications. Since the gradient test to assess stationarity has a simplified structure when compared to other tests, it is therefore a useful alternative when carrying out inference in these types of models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Statistics
Journal of Applied Statistics 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
126
审稿时长
6 months
期刊介绍: Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信