应用机器学习方法研究影响肝炎患者生存结果的预测因素。

IF 1.6 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xiaohua Li, Minghong Yang
{"title":"应用机器学习方法研究影响肝炎患者生存结果的预测因素。","authors":"Xiaohua Li, Minghong Yang","doi":"10.1080/10255842.2025.2546917","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatitis, caused by viruses A-E, can silently progress to liver damage, cirrhosis, or cancer. Chronic B and C increase failure risk. Machine learning models help predict hepatitis risks using patient data, symptoms, and history. This study used Decision Tree Classification (DTC) and Extreme Gradient Boosting Classification (XGBC) with three optimizers Rhizotomy Optimization Algorithm (ROA), Gold Rush Optimizer (GRO), and Motion-Encoded Electric Charged Particles Optimization Algorithm (MEPO) to enhance accuracy. Among hybrids, DTRO achieved the highest accuracy (0.991), outperforming DTC. XGRO followed with 0.991, and DTME with 0.954. DTRO emerged as the most reliable model for predicting hepatitis survival.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-17"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive factors affecting hepatitis patients survival results via application of the machine learning methods.\",\"authors\":\"Xiaohua Li, Minghong Yang\",\"doi\":\"10.1080/10255842.2025.2546917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatitis, caused by viruses A-E, can silently progress to liver damage, cirrhosis, or cancer. Chronic B and C increase failure risk. Machine learning models help predict hepatitis risks using patient data, symptoms, and history. This study used Decision Tree Classification (DTC) and Extreme Gradient Boosting Classification (XGBC) with three optimizers Rhizotomy Optimization Algorithm (ROA), Gold Rush Optimizer (GRO), and Motion-Encoded Electric Charged Particles Optimization Algorithm (MEPO) to enhance accuracy. Among hybrids, DTRO achieved the highest accuracy (0.991), outperforming DTC. XGRO followed with 0.991, and DTME with 0.954. DTRO emerged as the most reliable model for predicting hepatitis survival.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2546917\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2546917","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由A-E型病毒引起的肝炎可以悄无声息地发展为肝损伤、肝硬化或癌症。慢性B和C增加衰竭风险。机器学习模型利用患者数据、症状和病史帮助预测肝炎风险。本研究采用决策树分类(DTC)和极端梯度增强分类(XGBC),并结合根茎切分优化算法(ROA)、淘金优化算法(GRO)和运动编码带电粒子优化算法(MEPO)三种优化算法来提高准确率。其中DTRO的准确率最高(0.991),优于DTC。XGRO次之,0.991,DTME次之,0.954。DTRO成为预测肝炎生存最可靠的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive factors affecting hepatitis patients survival results via application of the machine learning methods.

Hepatitis, caused by viruses A-E, can silently progress to liver damage, cirrhosis, or cancer. Chronic B and C increase failure risk. Machine learning models help predict hepatitis risks using patient data, symptoms, and history. This study used Decision Tree Classification (DTC) and Extreme Gradient Boosting Classification (XGBC) with three optimizers Rhizotomy Optimization Algorithm (ROA), Gold Rush Optimizer (GRO), and Motion-Encoded Electric Charged Particles Optimization Algorithm (MEPO) to enhance accuracy. Among hybrids, DTRO achieved the highest accuracy (0.991), outperforming DTC. XGRO followed with 0.991, and DTME with 0.954. DTRO emerged as the most reliable model for predicting hepatitis survival.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信