基于时空特征融合的癫痫发作自动检测方法。

IF 1.6 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xia Zhang, Caini Yan, Yali Ren, Zhang Jianrui
{"title":"基于时空特征融合的癫痫发作自动检测方法。","authors":"Xia Zhang, Caini Yan, Yali Ren, Zhang Jianrui","doi":"10.1080/10255842.2025.2551845","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a spatiotemporal feature fusion method for automatic epileptic seizure detection, integrating Common Spatial Pattern (CSP) and Least Squares Support Vector Machine (LSSVM). First, it reconstructs electroencephalogram (EEG) noise using Ensemble Empirical Mode Decomposition (EEMD), then decomposes the original EEG signals using improved EEMD (IEEMD). Next, features are extracted from temporal and spatial dimensions to form a feature set. The classification process adopts a novel dual-classification mode based on LSSVM ultimately achieving high-performance automatic recognition of normal, seizure, and interictal EEG signals. Validated on Bonn and CHB-MIT EEG datasets, the IEEMD algorithm achieves 99.57% ± 0.02 accuracy on Bonn and 96.43% overall accuracy on CHB-MIT. Results show IEEMD and spatiotemporal features effectively address low interictal-ictal recognition rates in existing studies, offering a reliable means for epileptic seizure prediction.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-12"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic epileptic seizure detection method based on spatio-temporal feature fusion.\",\"authors\":\"Xia Zhang, Caini Yan, Yali Ren, Zhang Jianrui\",\"doi\":\"10.1080/10255842.2025.2551845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes a spatiotemporal feature fusion method for automatic epileptic seizure detection, integrating Common Spatial Pattern (CSP) and Least Squares Support Vector Machine (LSSVM). First, it reconstructs electroencephalogram (EEG) noise using Ensemble Empirical Mode Decomposition (EEMD), then decomposes the original EEG signals using improved EEMD (IEEMD). Next, features are extracted from temporal and spatial dimensions to form a feature set. The classification process adopts a novel dual-classification mode based on LSSVM ultimately achieving high-performance automatic recognition of normal, seizure, and interictal EEG signals. Validated on Bonn and CHB-MIT EEG datasets, the IEEMD algorithm achieves 99.57% ± 0.02 accuracy on Bonn and 96.43% overall accuracy on CHB-MIT. Results show IEEMD and spatiotemporal features effectively address low interictal-ictal recognition rates in existing studies, offering a reliable means for epileptic seizure prediction.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2551845\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2551845","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于公共空间模式(CSP)和最小二乘支持向量机(LSSVM)的癫痫发作自动检测的时空特征融合方法。该方法首先利用集成经验模态分解(EEMD)重构脑电信号噪声,然后利用改进的EEMD (IEEMD)对原始脑电信号进行分解。其次,从时间和空间维度提取特征,形成特征集。分类过程采用了一种基于LSSVM的新型双分类模式,最终实现了对正常、癫痫和间歇期脑电信号的高性能自动识别。在Bonn和CHB-MIT脑电数据集上验证,IEEMD算法在Bonn上的准确率为99.57%±0.02,在CHB-MIT上的总体准确率为96.43%。结果表明,IEEMD和时空特征有效地解决了现有研究中癫痫发作间期识别率低的问题,为癫痫发作预测提供了可靠的手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic epileptic seizure detection method based on spatio-temporal feature fusion.

This paper proposes a spatiotemporal feature fusion method for automatic epileptic seizure detection, integrating Common Spatial Pattern (CSP) and Least Squares Support Vector Machine (LSSVM). First, it reconstructs electroencephalogram (EEG) noise using Ensemble Empirical Mode Decomposition (EEMD), then decomposes the original EEG signals using improved EEMD (IEEMD). Next, features are extracted from temporal and spatial dimensions to form a feature set. The classification process adopts a novel dual-classification mode based on LSSVM ultimately achieving high-performance automatic recognition of normal, seizure, and interictal EEG signals. Validated on Bonn and CHB-MIT EEG datasets, the IEEMD algorithm achieves 99.57% ± 0.02 accuracy on Bonn and 96.43% overall accuracy on CHB-MIT. Results show IEEMD and spatiotemporal features effectively address low interictal-ictal recognition rates in existing studies, offering a reliable means for epileptic seizure prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信