一种新的模糊深度学习网络用于重度抑郁症脑电图分类。

IF 1.6 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Rong Hu, Tangsen Huang, Xiangdong Yin, Ensong Jiang
{"title":"一种新的模糊深度学习网络用于重度抑郁症脑电图分类。","authors":"Rong Hu, Tangsen Huang, Xiangdong Yin, Ensong Jiang","doi":"10.1080/10255842.2025.2484568","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces the EEG-FDL model, a novel optimized fuzzy deep learning approach for classifying Major Depressive Disorder (MDD) using EEG data. Integrating deep learning with fuzzy learning via the Non-Dominated Sorting Genetic Algorithm II (NSGA-II), EEG-FDL optimizes fuzzy membership functions and backpropagation. The model handles noise and data uncertainty, achieving a remarkable 99.72% accuracy in distinguishing MDD from healthy EEG signals using 5-fold cross-validation on a large dataset. External validation further confirms its efficacy. EEG-FDL outperforms traditional classifiers due to its effective handling of uncertainties and optimized parameter tuning.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-15"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel fuzzy deep learning network for electroencephalogram classification of major depressive disorder.\",\"authors\":\"Rong Hu, Tangsen Huang, Xiangdong Yin, Ensong Jiang\",\"doi\":\"10.1080/10255842.2025.2484568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces the EEG-FDL model, a novel optimized fuzzy deep learning approach for classifying Major Depressive Disorder (MDD) using EEG data. Integrating deep learning with fuzzy learning via the Non-Dominated Sorting Genetic Algorithm II (NSGA-II), EEG-FDL optimizes fuzzy membership functions and backpropagation. The model handles noise and data uncertainty, achieving a remarkable 99.72% accuracy in distinguishing MDD from healthy EEG signals using 5-fold cross-validation on a large dataset. External validation further confirms its efficacy. EEG-FDL outperforms traditional classifiers due to its effective handling of uncertainties and optimized parameter tuning.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2484568\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2484568","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的优化模糊深度学习方法EEG- fdl模型,用于利用EEG数据对重度抑郁症(MDD)进行分类。EEG-FDL通过非支配排序遗传算法II (NSGA-II)将深度学习与模糊学习相结合,优化模糊隶属函数和反向传播。该模型处理了噪声和数据不确定性,在大型数据集上使用5倍交叉验证,在区分MDD和健康脑电图信号方面达到了99.72%的准确率。外部验证进一步证实了其有效性。EEG-FDL由于其有效处理不确定性和优化的参数调整而优于传统分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel fuzzy deep learning network for electroencephalogram classification of major depressive disorder.

This study introduces the EEG-FDL model, a novel optimized fuzzy deep learning approach for classifying Major Depressive Disorder (MDD) using EEG data. Integrating deep learning with fuzzy learning via the Non-Dominated Sorting Genetic Algorithm II (NSGA-II), EEG-FDL optimizes fuzzy membership functions and backpropagation. The model handles noise and data uncertainty, achieving a remarkable 99.72% accuracy in distinguishing MDD from healthy EEG signals using 5-fold cross-validation on a large dataset. External validation further confirms its efficacy. EEG-FDL outperforms traditional classifiers due to its effective handling of uncertainties and optimized parameter tuning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信