Elisa Roldán Ciudad, Neil D Reeves, Glen Cooper, Kirstie Andrews
{"title":"通过机器学习研究高冲击和日常活动中ACL长度、应变和拉伸力。","authors":"Elisa Roldán Ciudad, Neil D Reeves, Glen Cooper, Kirstie Andrews","doi":"10.1080/10255842.2025.2551846","DOIUrl":null,"url":null,"abstract":"<p><p>Anterior cruciate ligament (ACL) reconstruction rates are rising, particularly among female athletes, though causes remain unclear. This study: (i) identify accurate machine learning models to predict ACL length, strain, and force during six high-impact and daily activities; (ii) assess the significance of kinematic and constitutional parameters; and (iii) analyse gender-based injury risk patterns. Using 9,375 observations per variable, 42 models were trained. Cubist, Generalized Boosted Models (GBM), and Random Forest (RF) achieved the best <i>R</i><sup>2</sup>, RMSE, and MAE. Knee flexion and external rotation strongly predicted ACL strain and force. Female athletes showed higher rotation during cuts, elevating ACL strain and risk.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-15"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating ACL length, strain and tensile force in high impact and daily activities through machine learning.\",\"authors\":\"Elisa Roldán Ciudad, Neil D Reeves, Glen Cooper, Kirstie Andrews\",\"doi\":\"10.1080/10255842.2025.2551846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anterior cruciate ligament (ACL) reconstruction rates are rising, particularly among female athletes, though causes remain unclear. This study: (i) identify accurate machine learning models to predict ACL length, strain, and force during six high-impact and daily activities; (ii) assess the significance of kinematic and constitutional parameters; and (iii) analyse gender-based injury risk patterns. Using 9,375 observations per variable, 42 models were trained. Cubist, Generalized Boosted Models (GBM), and Random Forest (RF) achieved the best <i>R</i><sup>2</sup>, RMSE, and MAE. Knee flexion and external rotation strongly predicted ACL strain and force. Female athletes showed higher rotation during cuts, elevating ACL strain and risk.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2551846\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2551846","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Investigating ACL length, strain and tensile force in high impact and daily activities through machine learning.
Anterior cruciate ligament (ACL) reconstruction rates are rising, particularly among female athletes, though causes remain unclear. This study: (i) identify accurate machine learning models to predict ACL length, strain, and force during six high-impact and daily activities; (ii) assess the significance of kinematic and constitutional parameters; and (iii) analyse gender-based injury risk patterns. Using 9,375 observations per variable, 42 models were trained. Cubist, Generalized Boosted Models (GBM), and Random Forest (RF) achieved the best R2, RMSE, and MAE. Knee flexion and external rotation strongly predicted ACL strain and force. Female athletes showed higher rotation during cuts, elevating ACL strain and risk.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.