{"title":"从发现到未来的医学应用毒液衍生的镇痛肽治疗周围疼痛。","authors":"Sedigheh Bagheri-Ziari, Kamran Pooshang Bagheri","doi":"10.2174/0113816128368659250805054737","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the availability of current peripheral pain medications, patients continue to experience acute pain and often need more potent analgesic options. As a result, the discovery of novel molecules is of significant importance. In recent years, the functional properties of peptides have opened new possibilities for pain treatment. This review explores the peptides derived from venoms that target peripheral pain pathways, while briefly investigating the peptides involved in the pathophysiology of peripheral pain. Key peripheral pain receptors include transient receptor potential vanilloid 1 and 2 (TRPV1 and TRPV2), voltage-gated calcium (Ca++), sodium (Na+), and potassium (K+) channels, as well as acid-sensing ion channels (ASICs). Venoms have shown remarkable potential as a source of new therapeutic molecules. Among venomous creatures, cone snails, snakes, sea anemones, tarantulas, scorpions, and spiders are known to possess analgesic peptides. These peptides exert their pain-relieving effects by influencing ion channels and other receptors. Recent studies have investigated the mechanisms of peptides isolated from venoms in various types of pain. These peptides exhibit robust analgesic effects in animal models. This study demonstrates that analgesic peptides derived from venom effectively reduce peripheral pain intensity, presenting promising new molecules for potential medical applications in peripheral pain management.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Discovery to the Future Medical Applications of Venom-derived Analgesic Peptides for the Treatment of Peripheral Pains.\",\"authors\":\"Sedigheh Bagheri-Ziari, Kamran Pooshang Bagheri\",\"doi\":\"10.2174/0113816128368659250805054737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the availability of current peripheral pain medications, patients continue to experience acute pain and often need more potent analgesic options. As a result, the discovery of novel molecules is of significant importance. In recent years, the functional properties of peptides have opened new possibilities for pain treatment. This review explores the peptides derived from venoms that target peripheral pain pathways, while briefly investigating the peptides involved in the pathophysiology of peripheral pain. Key peripheral pain receptors include transient receptor potential vanilloid 1 and 2 (TRPV1 and TRPV2), voltage-gated calcium (Ca++), sodium (Na+), and potassium (K+) channels, as well as acid-sensing ion channels (ASICs). Venoms have shown remarkable potential as a source of new therapeutic molecules. Among venomous creatures, cone snails, snakes, sea anemones, tarantulas, scorpions, and spiders are known to possess analgesic peptides. These peptides exert their pain-relieving effects by influencing ion channels and other receptors. Recent studies have investigated the mechanisms of peptides isolated from venoms in various types of pain. These peptides exhibit robust analgesic effects in animal models. This study demonstrates that analgesic peptides derived from venom effectively reduce peripheral pain intensity, presenting promising new molecules for potential medical applications in peripheral pain management.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128368659250805054737\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128368659250805054737","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
From Discovery to the Future Medical Applications of Venom-derived Analgesic Peptides for the Treatment of Peripheral Pains.
Despite the availability of current peripheral pain medications, patients continue to experience acute pain and often need more potent analgesic options. As a result, the discovery of novel molecules is of significant importance. In recent years, the functional properties of peptides have opened new possibilities for pain treatment. This review explores the peptides derived from venoms that target peripheral pain pathways, while briefly investigating the peptides involved in the pathophysiology of peripheral pain. Key peripheral pain receptors include transient receptor potential vanilloid 1 and 2 (TRPV1 and TRPV2), voltage-gated calcium (Ca++), sodium (Na+), and potassium (K+) channels, as well as acid-sensing ion channels (ASICs). Venoms have shown remarkable potential as a source of new therapeutic molecules. Among venomous creatures, cone snails, snakes, sea anemones, tarantulas, scorpions, and spiders are known to possess analgesic peptides. These peptides exert their pain-relieving effects by influencing ion channels and other receptors. Recent studies have investigated the mechanisms of peptides isolated from venoms in various types of pain. These peptides exhibit robust analgesic effects in animal models. This study demonstrates that analgesic peptides derived from venom effectively reduce peripheral pain intensity, presenting promising new molecules for potential medical applications in peripheral pain management.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.