吡啶受体共轭有机荧光团:设计、合成及其在线粒体成像中的应用综述

IF 2.8 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Pradip Debnath
{"title":"吡啶受体共轭有机荧光团:设计、合成及其在线粒体成像中的应用综述","authors":"Pradip Debnath","doi":"10.2174/0113816128395084250708080830","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are known as the powerhouse of eukaryotic cells. They play a crucial role in several biological processes and maintain cellular health. The ideal condition of mitochondria depends not only on their morphology but also on various micro-environmental factors, including pH, polarity, and temperature. Changes in these factors or malfunctions of mitochondrial species, such as Reactive Oxygen Species (ROS), active nitrogen species, metal cations, anions, and protons, can lead to several diseases in humans, including heart failure, kidney disorders, diabetes, Alzheimer's disease, and Parkinson's disease. Therefore, monitoring Reactive Small Molecules (RSMs), maintaining micro-environmental factors, and estimating ROS levels in mitochondria are essential for understanding physiological behaviour and the pathogenesis of related diseases. Irregularities in mitochondrial function are closely linked to a range of clinical conditions, highlighting the importance of targeting mitochondria for therapeutic benefits. Over the last decade, numerous studies have focused on the development of small organic conjugated systems for mitochondrial imaging, utilizing optical signal transduction pathways. In this review, the design and synthetic strategies for small organic fluorophores conjugated with a pyridinium acceptor, their applications in mitochondrial imaging, and the detection of RSMs in mitochondria have been discussed. Studies have revealed that small-molecule fluorescent probes are being widely used for the detection and imaging of RSMs located in mitochondria. Moreover, this review covers the mechanistic insights, photophysical properties, biological characteristics of fluorophores, and therapeutic strategies targeting the mitochondria of human cells.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic Fluorophores Conjugated with Pyridinium Acceptor: A Review on Design, Synthesis, and Application in Mitochondrial Imaging.\",\"authors\":\"Pradip Debnath\",\"doi\":\"10.2174/0113816128395084250708080830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are known as the powerhouse of eukaryotic cells. They play a crucial role in several biological processes and maintain cellular health. The ideal condition of mitochondria depends not only on their morphology but also on various micro-environmental factors, including pH, polarity, and temperature. Changes in these factors or malfunctions of mitochondrial species, such as Reactive Oxygen Species (ROS), active nitrogen species, metal cations, anions, and protons, can lead to several diseases in humans, including heart failure, kidney disorders, diabetes, Alzheimer's disease, and Parkinson's disease. Therefore, monitoring Reactive Small Molecules (RSMs), maintaining micro-environmental factors, and estimating ROS levels in mitochondria are essential for understanding physiological behaviour and the pathogenesis of related diseases. Irregularities in mitochondrial function are closely linked to a range of clinical conditions, highlighting the importance of targeting mitochondria for therapeutic benefits. Over the last decade, numerous studies have focused on the development of small organic conjugated systems for mitochondrial imaging, utilizing optical signal transduction pathways. In this review, the design and synthetic strategies for small organic fluorophores conjugated with a pyridinium acceptor, their applications in mitochondrial imaging, and the detection of RSMs in mitochondria have been discussed. Studies have revealed that small-molecule fluorescent probes are being widely used for the detection and imaging of RSMs located in mitochondria. Moreover, this review covers the mechanistic insights, photophysical properties, biological characteristics of fluorophores, and therapeutic strategies targeting the mitochondria of human cells.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128395084250708080830\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128395084250708080830","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体被认为是真核细胞的发电站。它们在几个生物过程中起着至关重要的作用,并维持细胞健康。线粒体的理想状态不仅取决于其形态,还取决于各种微环境因素,包括pH、极性和温度。这些因素的变化或线粒体物种的故障,如活性氧(ROS)、活性氮物种、金属阳离子、阴离子和质子,可导致人类多种疾病,包括心力衰竭、肾脏疾病、糖尿病、阿尔茨海默病和帕金森病。因此,监测反应性小分子(Reactive Small Molecules, RSMs),维持微环境因素,估计线粒体中的ROS水平,对于了解相关疾病的生理行为和发病机制至关重要。线粒体功能的不规则性与一系列临床状况密切相关,突出了靶向线粒体治疗益处的重要性。在过去的十年中,许多研究都集中在开发用于线粒体成像的小型有机共轭系统,利用光信号转导途径。本文综述了吡啶受体偶联有机荧光团的设计和合成策略,及其在线粒体成像和线粒体rsm检测中的应用。研究表明,小分子荧光探针正被广泛用于线粒体rsm的检测和成像。此外,本文综述了荧光团的机理、光物理特性、生物学特性以及针对人类细胞线粒体的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Organic Fluorophores Conjugated with Pyridinium Acceptor: A Review on Design, Synthesis, and Application in Mitochondrial Imaging.

Mitochondria are known as the powerhouse of eukaryotic cells. They play a crucial role in several biological processes and maintain cellular health. The ideal condition of mitochondria depends not only on their morphology but also on various micro-environmental factors, including pH, polarity, and temperature. Changes in these factors or malfunctions of mitochondrial species, such as Reactive Oxygen Species (ROS), active nitrogen species, metal cations, anions, and protons, can lead to several diseases in humans, including heart failure, kidney disorders, diabetes, Alzheimer's disease, and Parkinson's disease. Therefore, monitoring Reactive Small Molecules (RSMs), maintaining micro-environmental factors, and estimating ROS levels in mitochondria are essential for understanding physiological behaviour and the pathogenesis of related diseases. Irregularities in mitochondrial function are closely linked to a range of clinical conditions, highlighting the importance of targeting mitochondria for therapeutic benefits. Over the last decade, numerous studies have focused on the development of small organic conjugated systems for mitochondrial imaging, utilizing optical signal transduction pathways. In this review, the design and synthetic strategies for small organic fluorophores conjugated with a pyridinium acceptor, their applications in mitochondrial imaging, and the detection of RSMs in mitochondria have been discussed. Studies have revealed that small-molecule fluorescent probes are being widely used for the detection and imaging of RSMs located in mitochondria. Moreover, this review covers the mechanistic insights, photophysical properties, biological characteristics of fluorophores, and therapeutic strategies targeting the mitochondria of human cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信