Hamza Tariq, Muhammad Usman Zahid, Bilal Qadeer, Ahmad M Alharbi, Abdulelah Aljuaid, Khalid Jambi, Nouman Rasheed Jatoi, Samah H Abu-Hussien, Muhammad Aslam Khan, Syed Ali Imran Bokhari
{"title":"毛缕草合成绿色硫化锌纳米粒子(ZnS-NPs)和氧化锌纳米粒子(ZnO-NPs)的药理学性质","authors":"Hamza Tariq, Muhammad Usman Zahid, Bilal Qadeer, Ahmad M Alharbi, Abdulelah Aljuaid, Khalid Jambi, Nouman Rasheed Jatoi, Samah H Abu-Hussien, Muhammad Aslam Khan, Syed Ali Imran Bokhari","doi":"10.1007/s00449-025-03225-2","DOIUrl":null,"url":null,"abstract":"<p><p>The conventional physical and chemical synthesis of nanomaterials is associated with multiple disadvantages, such as high energy consumption, high cost, time consumption, and the use of toxic chemicals that are not only hazardous in the manufacturing setup but are also harmful to the environment. To overcome such limitations, phytofabrication, i.e., the use of plants for the synthesis of nanoparticles is considered preferred as it is an inexpensive, sustainable, non-toxic, eco-friendly, and green approach. The current study aims to explore and compare the biological properties of green synthesized zinc oxide and zinc sulfide nanoparticles. The materials are prepared using eco-friendly chemistry, using an aqueous herbal extract of Bergenia ciliata. The materials are then subjected to comprehensive characterization techniques and biological studies using antibacterial, antifungal, antiparasitic, anticancer, antioxidant, and biocompatibility studies. Our comprehensive evaluation reveals that green-synthesized ZnS-NPs demonstrate superior antibacterial and anticancer properties compared to ZnO-NPs. Specifically, ZnS-NPs induced significant zones of inhibition (ZOI) of 24 ± 1.2 and 22 ± 0.8 mm against B. subtilis and E. coli, respectively, with a minimum inhibitory concentration (MIC) of 1.125 mg/mL. In contrast, ZnO-NPs displayed better dispersion behavior, along with enhanced antioxidant, antiparasitic, and antidiabetic activities. Notably, ZnO-NPs significantly inhibited both amastigote and promastigote forms of Leishmania tropica (KWH23), with MICs of 112 and 135 µg/mL, respectively, highlighting their strong therapeutic potential against leishmaniasis. However, none of the samples exhibit antifungal properties as they fail to inflict any zone of inhibition against the tested fungal strains. We thus conclude that the B. ciliata synthesized green ZnS-NPs and ZnO-NPs exhibit distinct but excellent therapeutic properties and that both the synthesized materials have the potential to be further explored in in vitro and in vivo studies.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmacological properties of Bergenia ciliata synthesized green zinc sulfide nanoparticles (ZnS-NPs) and zinc oxide nanoparticles (ZnO-NPs).\",\"authors\":\"Hamza Tariq, Muhammad Usman Zahid, Bilal Qadeer, Ahmad M Alharbi, Abdulelah Aljuaid, Khalid Jambi, Nouman Rasheed Jatoi, Samah H Abu-Hussien, Muhammad Aslam Khan, Syed Ali Imran Bokhari\",\"doi\":\"10.1007/s00449-025-03225-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The conventional physical and chemical synthesis of nanomaterials is associated with multiple disadvantages, such as high energy consumption, high cost, time consumption, and the use of toxic chemicals that are not only hazardous in the manufacturing setup but are also harmful to the environment. To overcome such limitations, phytofabrication, i.e., the use of plants for the synthesis of nanoparticles is considered preferred as it is an inexpensive, sustainable, non-toxic, eco-friendly, and green approach. The current study aims to explore and compare the biological properties of green synthesized zinc oxide and zinc sulfide nanoparticles. The materials are prepared using eco-friendly chemistry, using an aqueous herbal extract of Bergenia ciliata. The materials are then subjected to comprehensive characterization techniques and biological studies using antibacterial, antifungal, antiparasitic, anticancer, antioxidant, and biocompatibility studies. Our comprehensive evaluation reveals that green-synthesized ZnS-NPs demonstrate superior antibacterial and anticancer properties compared to ZnO-NPs. Specifically, ZnS-NPs induced significant zones of inhibition (ZOI) of 24 ± 1.2 and 22 ± 0.8 mm against B. subtilis and E. coli, respectively, with a minimum inhibitory concentration (MIC) of 1.125 mg/mL. In contrast, ZnO-NPs displayed better dispersion behavior, along with enhanced antioxidant, antiparasitic, and antidiabetic activities. Notably, ZnO-NPs significantly inhibited both amastigote and promastigote forms of Leishmania tropica (KWH23), with MICs of 112 and 135 µg/mL, respectively, highlighting their strong therapeutic potential against leishmaniasis. However, none of the samples exhibit antifungal properties as they fail to inflict any zone of inhibition against the tested fungal strains. We thus conclude that the B. ciliata synthesized green ZnS-NPs and ZnO-NPs exhibit distinct but excellent therapeutic properties and that both the synthesized materials have the potential to be further explored in in vitro and in vivo studies.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-025-03225-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03225-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Pharmacological properties of Bergenia ciliata synthesized green zinc sulfide nanoparticles (ZnS-NPs) and zinc oxide nanoparticles (ZnO-NPs).
The conventional physical and chemical synthesis of nanomaterials is associated with multiple disadvantages, such as high energy consumption, high cost, time consumption, and the use of toxic chemicals that are not only hazardous in the manufacturing setup but are also harmful to the environment. To overcome such limitations, phytofabrication, i.e., the use of plants for the synthesis of nanoparticles is considered preferred as it is an inexpensive, sustainable, non-toxic, eco-friendly, and green approach. The current study aims to explore and compare the biological properties of green synthesized zinc oxide and zinc sulfide nanoparticles. The materials are prepared using eco-friendly chemistry, using an aqueous herbal extract of Bergenia ciliata. The materials are then subjected to comprehensive characterization techniques and biological studies using antibacterial, antifungal, antiparasitic, anticancer, antioxidant, and biocompatibility studies. Our comprehensive evaluation reveals that green-synthesized ZnS-NPs demonstrate superior antibacterial and anticancer properties compared to ZnO-NPs. Specifically, ZnS-NPs induced significant zones of inhibition (ZOI) of 24 ± 1.2 and 22 ± 0.8 mm against B. subtilis and E. coli, respectively, with a minimum inhibitory concentration (MIC) of 1.125 mg/mL. In contrast, ZnO-NPs displayed better dispersion behavior, along with enhanced antioxidant, antiparasitic, and antidiabetic activities. Notably, ZnO-NPs significantly inhibited both amastigote and promastigote forms of Leishmania tropica (KWH23), with MICs of 112 and 135 µg/mL, respectively, highlighting their strong therapeutic potential against leishmaniasis. However, none of the samples exhibit antifungal properties as they fail to inflict any zone of inhibition against the tested fungal strains. We thus conclude that the B. ciliata synthesized green ZnS-NPs and ZnO-NPs exhibit distinct but excellent therapeutic properties and that both the synthesized materials have the potential to be further explored in in vitro and in vivo studies.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.