Siti Syazwani Mahamad, Mohd Shamzi Mohamed, Mohd Nazren Radzuan, James Winterburn, Mohd Rafein Zakaria
{"title":"利用废甘油在生物反应器中优化生产鼠李糖脂生物表面活性剂。","authors":"Siti Syazwani Mahamad, Mohd Shamzi Mohamed, Mohd Nazren Radzuan, James Winterburn, Mohd Rafein Zakaria","doi":"10.1007/s00449-025-03224-3","DOIUrl":null,"url":null,"abstract":"<p><p>Rhamnolipids (RLs) are glycolipid bio-surfactants produced by microorganisms with applications in industries, including environmental remediation and oil recovery, comparable to chemical surfactants. However, the reproducibility and scalability of RLs production in shake flask systems limit their industrial use, prompting the need for advanced bioreactor systems. This study aims to address this challenge by optimizing RLs production by Pseudomonas aeruginosa RS6 using treated waste glycerol (TWG), a low-cost by-product of biodiesel production, as a carbon source. Response surface methodology (RSM) was employed to evaluate the combined impact of TWG concentration, aeration, and agitation rates on RLs production and microbial behavior within a bioreactor system. Optimal conditions were then determined using central composite design (CCD) and analysis of variance (ANOVA). ANOVA revealed that the quadratic model significantly predicts RLs production (p < 0.0001). TWG concentration significantly influences RLs yield (p < 0.05), while TWG concentration and agitation rates significantly affect biomass production (p < 0.05). Optimal conditions were 2.827% TWG, 1.02 vvm aeration, and 443 rpm agitation. The model's validity was confirmed, yielding 11.32 g/L RLs and 5.38 g/L biomass. Kinetic studies showed Y<sub>X/S</sub> and Y<sub>P/S</sub> values of 5.53 g/g and 3.36 g/g, indicating efficient substrate utilization and metabolite production. RSM optimization enhanced RLs yield by 4.88-fold compared to shake flask results. The produced RLs achieved a kerosene emulsion index of 70.12% and reduced surface tension to 28.61 mN/m, highlighting their potential in environmental remediation. This study addresses the scalability issues in RLs production, and highlights the feasibility of using waste glycerol for large-scale RLs production.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing rhamnolipid bio-surfactant production in a bioreactor using waste glycerol.\",\"authors\":\"Siti Syazwani Mahamad, Mohd Shamzi Mohamed, Mohd Nazren Radzuan, James Winterburn, Mohd Rafein Zakaria\",\"doi\":\"10.1007/s00449-025-03224-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rhamnolipids (RLs) are glycolipid bio-surfactants produced by microorganisms with applications in industries, including environmental remediation and oil recovery, comparable to chemical surfactants. However, the reproducibility and scalability of RLs production in shake flask systems limit their industrial use, prompting the need for advanced bioreactor systems. This study aims to address this challenge by optimizing RLs production by Pseudomonas aeruginosa RS6 using treated waste glycerol (TWG), a low-cost by-product of biodiesel production, as a carbon source. Response surface methodology (RSM) was employed to evaluate the combined impact of TWG concentration, aeration, and agitation rates on RLs production and microbial behavior within a bioreactor system. Optimal conditions were then determined using central composite design (CCD) and analysis of variance (ANOVA). ANOVA revealed that the quadratic model significantly predicts RLs production (p < 0.0001). TWG concentration significantly influences RLs yield (p < 0.05), while TWG concentration and agitation rates significantly affect biomass production (p < 0.05). Optimal conditions were 2.827% TWG, 1.02 vvm aeration, and 443 rpm agitation. The model's validity was confirmed, yielding 11.32 g/L RLs and 5.38 g/L biomass. Kinetic studies showed Y<sub>X/S</sub> and Y<sub>P/S</sub> values of 5.53 g/g and 3.36 g/g, indicating efficient substrate utilization and metabolite production. RSM optimization enhanced RLs yield by 4.88-fold compared to shake flask results. The produced RLs achieved a kerosene emulsion index of 70.12% and reduced surface tension to 28.61 mN/m, highlighting their potential in environmental remediation. This study addresses the scalability issues in RLs production, and highlights the feasibility of using waste glycerol for large-scale RLs production.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-025-03224-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03224-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Optimizing rhamnolipid bio-surfactant production in a bioreactor using waste glycerol.
Rhamnolipids (RLs) are glycolipid bio-surfactants produced by microorganisms with applications in industries, including environmental remediation and oil recovery, comparable to chemical surfactants. However, the reproducibility and scalability of RLs production in shake flask systems limit their industrial use, prompting the need for advanced bioreactor systems. This study aims to address this challenge by optimizing RLs production by Pseudomonas aeruginosa RS6 using treated waste glycerol (TWG), a low-cost by-product of biodiesel production, as a carbon source. Response surface methodology (RSM) was employed to evaluate the combined impact of TWG concentration, aeration, and agitation rates on RLs production and microbial behavior within a bioreactor system. Optimal conditions were then determined using central composite design (CCD) and analysis of variance (ANOVA). ANOVA revealed that the quadratic model significantly predicts RLs production (p < 0.0001). TWG concentration significantly influences RLs yield (p < 0.05), while TWG concentration and agitation rates significantly affect biomass production (p < 0.05). Optimal conditions were 2.827% TWG, 1.02 vvm aeration, and 443 rpm agitation. The model's validity was confirmed, yielding 11.32 g/L RLs and 5.38 g/L biomass. Kinetic studies showed YX/S and YP/S values of 5.53 g/g and 3.36 g/g, indicating efficient substrate utilization and metabolite production. RSM optimization enhanced RLs yield by 4.88-fold compared to shake flask results. The produced RLs achieved a kerosene emulsion index of 70.12% and reduced surface tension to 28.61 mN/m, highlighting their potential in environmental remediation. This study addresses the scalability issues in RLs production, and highlights the feasibility of using waste glycerol for large-scale RLs production.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.