Jia Liu, Cong Du, Nan Xu, Chuanqi Shi, Baoling Liu, Bingjie Tu, Keyuan Zhang, Kang Gao
{"title":"一种新型的藻类辅助测序间歇气升式生物反应器(A- sbiab),采用聚酯长丝为载体处理猪舍废水。","authors":"Jia Liu, Cong Du, Nan Xu, Chuanqi Shi, Baoling Liu, Bingjie Tu, Keyuan Zhang, Kang Gao","doi":"10.1007/s00449-025-03231-4","DOIUrl":null,"url":null,"abstract":"<p><p>Algae-assisted biological wastewater treatment technology has been widely applied in wastewater treatment due to its low cost and great removal performance. However, the stabilization and sustainability of the alga-bacteria symbiosis system still need to be developed. In this work, an algae-assisted sequencing batch and intermittent air-lift bioreactor (A-SBIAB) system was constructed for removing the nutrients from the piggery wastewater. A strengthened algae-bacterial symbiosis system was also achieved with the aid of a suspended bio-carrier composed of polyester filament fixed on concentric plastic rings, which provided enhanced surface area and illumination access for microbial attachment. The removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were up to 92.0%, 81.7% and 89.3%, respectively, at the optimum parameters (Chl-a concentration of 1000 mg/m<sup>3</sup>, light intensity of 6000 lx and lighting time 10 h). The Campylobacteria (72.05%), Desulfuromonadia (11.16%), Spirochaetia (3.10%) and Bacteroidia (1.73%) as the dominant bacterial communities would be responsible for the nitrate ammonification, nitrogen fixation, nitrate reduction and organics degradation, respectively. Meanwhile, Chlorophyceae (98.21%) became the overwhelming algal community, playing a positive effect on the nutrients removal.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel algae-assisted sequencing batch and intermittent air-lift bioreactor (A-SBIAB) using polyester filament-based carriers for piggery wastewater treatment.\",\"authors\":\"Jia Liu, Cong Du, Nan Xu, Chuanqi Shi, Baoling Liu, Bingjie Tu, Keyuan Zhang, Kang Gao\",\"doi\":\"10.1007/s00449-025-03231-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Algae-assisted biological wastewater treatment technology has been widely applied in wastewater treatment due to its low cost and great removal performance. However, the stabilization and sustainability of the alga-bacteria symbiosis system still need to be developed. In this work, an algae-assisted sequencing batch and intermittent air-lift bioreactor (A-SBIAB) system was constructed for removing the nutrients from the piggery wastewater. A strengthened algae-bacterial symbiosis system was also achieved with the aid of a suspended bio-carrier composed of polyester filament fixed on concentric plastic rings, which provided enhanced surface area and illumination access for microbial attachment. The removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were up to 92.0%, 81.7% and 89.3%, respectively, at the optimum parameters (Chl-a concentration of 1000 mg/m<sup>3</sup>, light intensity of 6000 lx and lighting time 10 h). The Campylobacteria (72.05%), Desulfuromonadia (11.16%), Spirochaetia (3.10%) and Bacteroidia (1.73%) as the dominant bacterial communities would be responsible for the nitrate ammonification, nitrogen fixation, nitrate reduction and organics degradation, respectively. Meanwhile, Chlorophyceae (98.21%) became the overwhelming algal community, playing a positive effect on the nutrients removal.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-025-03231-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03231-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A novel algae-assisted sequencing batch and intermittent air-lift bioreactor (A-SBIAB) using polyester filament-based carriers for piggery wastewater treatment.
Algae-assisted biological wastewater treatment technology has been widely applied in wastewater treatment due to its low cost and great removal performance. However, the stabilization and sustainability of the alga-bacteria symbiosis system still need to be developed. In this work, an algae-assisted sequencing batch and intermittent air-lift bioreactor (A-SBIAB) system was constructed for removing the nutrients from the piggery wastewater. A strengthened algae-bacterial symbiosis system was also achieved with the aid of a suspended bio-carrier composed of polyester filament fixed on concentric plastic rings, which provided enhanced surface area and illumination access for microbial attachment. The removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were up to 92.0%, 81.7% and 89.3%, respectively, at the optimum parameters (Chl-a concentration of 1000 mg/m3, light intensity of 6000 lx and lighting time 10 h). The Campylobacteria (72.05%), Desulfuromonadia (11.16%), Spirochaetia (3.10%) and Bacteroidia (1.73%) as the dominant bacterial communities would be responsible for the nitrate ammonification, nitrogen fixation, nitrate reduction and organics degradation, respectively. Meanwhile, Chlorophyceae (98.21%) became the overwhelming algal community, playing a positive effect on the nutrients removal.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.