自旋交叉复合材料中的应力耦合自旋态开关调制有机半导体中的电流。

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuteng Zhang, Aurelian Rotaru, Thomas Ranquet, Xinyu Yang, Yue Zan, Benjamin Reig, Isabelle Séguy, Lionel Salmon, Gábor Molnár and Azzedine Bousseksou
{"title":"自旋交叉复合材料中的应力耦合自旋态开关调制有机半导体中的电流。","authors":"Yuteng Zhang, Aurelian Rotaru, Thomas Ranquet, Xinyu Yang, Yue Zan, Benjamin Reig, Isabelle Séguy, Lionel Salmon, Gábor Molnár and Azzedine Bousseksou","doi":"10.1039/D5TC02153G","DOIUrl":null,"url":null,"abstract":"<p >The combination of spin-crossover (SCO) complexes with electrically conducting materials offers a promising route for developing stimuli-responsive electronics, yet the mechanism of charge transport modulation remains unexplored. Here, we investigate a bilayer heterostructure comprising silica-coated SCO nanoparticles [Fe(Htrz)<small><sub>2</sub></small>(trz)](BF<small><sub>4</sub></small>)@SiO<small><sub>2</sub></small> within a polyvinylpyrrolidone (PVP) matrix and organic semiconductors (OSCs), where mechanical stress generated by spin-state switching within the PVP:SCO layer modulates the conductance within the OSC layer. Through <em>in situ</em> piezo-resistivity characterization, we reveal a reversible conductance modulation in the OSC layer under hydrostatic pressure, providing a quantitative evaluation of pressure-induced stress sensitivity with the OSC layer. Crucially, the intrinsic properties of the SCO nanoparticles dictate key characteristics of the switching device such as the spin transition temperature and hysteresis width, enabling tunable and non-volatile memory behavior. Demonstrating robust switching over multiple thermal cycles—rooted in the intrinsic thermal stability of the SCO and validated by X-ray diffraction/optical spectroscopy analysis at elevated temperatures—this work lays the groundwork for a new class of stress-coupled spin-electronic systems, offering a potential route for the development of piezo-resistive sensors and adaptive memory devices.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 36","pages":" 18905-18912"},"PeriodicalIF":5.1000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12368574/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stress-coupled spin state switching in a spin crossover composite modulates current in an organic semiconductor\",\"authors\":\"Yuteng Zhang, Aurelian Rotaru, Thomas Ranquet, Xinyu Yang, Yue Zan, Benjamin Reig, Isabelle Séguy, Lionel Salmon, Gábor Molnár and Azzedine Bousseksou\",\"doi\":\"10.1039/D5TC02153G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The combination of spin-crossover (SCO) complexes with electrically conducting materials offers a promising route for developing stimuli-responsive electronics, yet the mechanism of charge transport modulation remains unexplored. Here, we investigate a bilayer heterostructure comprising silica-coated SCO nanoparticles [Fe(Htrz)<small><sub>2</sub></small>(trz)](BF<small><sub>4</sub></small>)@SiO<small><sub>2</sub></small> within a polyvinylpyrrolidone (PVP) matrix and organic semiconductors (OSCs), where mechanical stress generated by spin-state switching within the PVP:SCO layer modulates the conductance within the OSC layer. Through <em>in situ</em> piezo-resistivity characterization, we reveal a reversible conductance modulation in the OSC layer under hydrostatic pressure, providing a quantitative evaluation of pressure-induced stress sensitivity with the OSC layer. Crucially, the intrinsic properties of the SCO nanoparticles dictate key characteristics of the switching device such as the spin transition temperature and hysteresis width, enabling tunable and non-volatile memory behavior. Demonstrating robust switching over multiple thermal cycles—rooted in the intrinsic thermal stability of the SCO and validated by X-ray diffraction/optical spectroscopy analysis at elevated temperatures—this work lays the groundwork for a new class of stress-coupled spin-electronic systems, offering a potential route for the development of piezo-resistive sensors and adaptive memory devices.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 36\",\"pages\":\" 18905-18912\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12368574/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02153g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02153g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自旋交叉(SCO)配合物与导电材料的结合为开发刺激响应电子学提供了一条有前途的途径,但电荷传输调制的机制仍未被探索。在这里,我们研究了由二氧化硅涂层的SCO纳米颗粒[Fe(Htrz)2(trz)](BF4)@SiO2组成的双层异质结构,该结构位于聚乙烯吡罗烷酮(PVP)基质和有机半导体(OSCs)中,其中PVP:SCO层内自旋态开关产生的机械应力调节了OSC层内的电导。通过原位压电阻率表征,我们揭示了静水压力下盐盐层的可逆电导调制,为盐盐层的压力诱导应力敏感性提供了定量评价。至关重要的是,SCO纳米颗粒的固有特性决定了开关器件的关键特性,如自旋转变温度和滞后宽度,从而实现可调谐和非易失性存储行为。基于SCO固有的热稳定性,并在高温下通过x射线衍射/光谱学分析进行验证,证明了多个热循环的鲁棒切换,这项工作为新型应力耦合自旋电子系统奠定了基础,为压阻传感器和自适应存储器件的发展提供了潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stress-coupled spin state switching in a spin crossover composite modulates current in an organic semiconductor

Stress-coupled spin state switching in a spin crossover composite modulates current in an organic semiconductor

The combination of spin-crossover (SCO) complexes with electrically conducting materials offers a promising route for developing stimuli-responsive electronics, yet the mechanism of charge transport modulation remains unexplored. Here, we investigate a bilayer heterostructure comprising silica-coated SCO nanoparticles [Fe(Htrz)2(trz)](BF4)@SiO2 within a polyvinylpyrrolidone (PVP) matrix and organic semiconductors (OSCs), where mechanical stress generated by spin-state switching within the PVP:SCO layer modulates the conductance within the OSC layer. Through in situ piezo-resistivity characterization, we reveal a reversible conductance modulation in the OSC layer under hydrostatic pressure, providing a quantitative evaluation of pressure-induced stress sensitivity with the OSC layer. Crucially, the intrinsic properties of the SCO nanoparticles dictate key characteristics of the switching device such as the spin transition temperature and hysteresis width, enabling tunable and non-volatile memory behavior. Demonstrating robust switching over multiple thermal cycles—rooted in the intrinsic thermal stability of the SCO and validated by X-ray diffraction/optical spectroscopy analysis at elevated temperatures—this work lays the groundwork for a new class of stress-coupled spin-electronic systems, offering a potential route for the development of piezo-resistive sensors and adaptive memory devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信