利用组合实验和机器学习的异常霍尔效应的高通量材料探索系统

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ryo Toyama, Yuma Iwasaki, Prabhanjan D. Kulkarni, Hirofumi Suto, Tomoya Nakatani, Yuya Sakuraba
{"title":"利用组合实验和机器学习的异常霍尔效应的高通量材料探索系统","authors":"Ryo Toyama, Yuma Iwasaki, Prabhanjan D. Kulkarni, Hirofumi Suto, Tomoya Nakatani, Yuya Sakuraba","doi":"10.1038/s41524-025-01757-5","DOIUrl":null,"url":null,"abstract":"<p>The development of new materials exhibiting large anomalous Hall effect (AHE) is essential for realizing highly efficient spintronic devices. However, this development has been a time-consuming process due to the combinatorial explosion for multielement systems and limited experimental throughput. In this study, we identify new materials exhibiting large AHE in heavy-metal-substituted Fe-based alloys using a high-throughput materials exploration method that combines deposition of composition-spread films using combinatorial sputtering, photoresist-free facile multiple-device fabrication using laser patterning, simultaneous AHE measurement of multiple devices using a customized multichannel probe, and prediction of candidate materials using machine learning. Based on experimental AHE data on Fe-based binary system alloyed with various single heavy metals, we perform machine learning analysis to predict the Fe<i>-</i>based <i>ternary</i> system containing two heavy metals for larger AHE. We experimentally confirm larger AHE in the predicted Fe–Ir–Pt system. Using scaling analysis, we reveal that the enhancement of AHE originates from the extrinsic contribution.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"8 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput materials exploration system for the anomalous Hall effect using combinatorial experiments and machine learning\",\"authors\":\"Ryo Toyama, Yuma Iwasaki, Prabhanjan D. Kulkarni, Hirofumi Suto, Tomoya Nakatani, Yuya Sakuraba\",\"doi\":\"10.1038/s41524-025-01757-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of new materials exhibiting large anomalous Hall effect (AHE) is essential for realizing highly efficient spintronic devices. However, this development has been a time-consuming process due to the combinatorial explosion for multielement systems and limited experimental throughput. In this study, we identify new materials exhibiting large AHE in heavy-metal-substituted Fe-based alloys using a high-throughput materials exploration method that combines deposition of composition-spread films using combinatorial sputtering, photoresist-free facile multiple-device fabrication using laser patterning, simultaneous AHE measurement of multiple devices using a customized multichannel probe, and prediction of candidate materials using machine learning. Based on experimental AHE data on Fe-based binary system alloyed with various single heavy metals, we perform machine learning analysis to predict the Fe<i>-</i>based <i>ternary</i> system containing two heavy metals for larger AHE. We experimentally confirm larger AHE in the predicted Fe–Ir–Pt system. Using scaling analysis, we reveal that the enhancement of AHE originates from the extrinsic contribution.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01757-5\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01757-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发具有大反常霍尔效应(AHE)的新材料是实现高效自旋电子器件的关键。然而,由于多元素系统的组合爆炸和有限的实验吞吐量,这种发展一直是一个耗时的过程。在这项研究中,我们使用一种高通量材料探索方法确定了在重金属取代铁基合金中表现出大AHE的新材料,该方法结合了使用组合溅射沉积成分扩散膜,使用激光图像化的无光敏易加工多器件制造,使用定制的多通道探针同时测量多个器件的AHE,以及使用机器学习预测候选材料。基于不同单一重金属的铁基二元合金的AHE实验数据,我们进行了机器学习分析,以预测含两种重金属的铁基三元体系更大的AHE。我们通过实验证实,在预测的Fe-Ir-Pt体系中存在较大的AHE。通过尺度分析,我们发现AHE的增强源于外部贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-throughput materials exploration system for the anomalous Hall effect using combinatorial experiments and machine learning

High-throughput materials exploration system for the anomalous Hall effect using combinatorial experiments and machine learning

The development of new materials exhibiting large anomalous Hall effect (AHE) is essential for realizing highly efficient spintronic devices. However, this development has been a time-consuming process due to the combinatorial explosion for multielement systems and limited experimental throughput. In this study, we identify new materials exhibiting large AHE in heavy-metal-substituted Fe-based alloys using a high-throughput materials exploration method that combines deposition of composition-spread films using combinatorial sputtering, photoresist-free facile multiple-device fabrication using laser patterning, simultaneous AHE measurement of multiple devices using a customized multichannel probe, and prediction of candidate materials using machine learning. Based on experimental AHE data on Fe-based binary system alloyed with various single heavy metals, we perform machine learning analysis to predict the Fe-based ternary system containing two heavy metals for larger AHE. We experimentally confirm larger AHE in the predicted Fe–Ir–Pt system. Using scaling analysis, we reveal that the enhancement of AHE originates from the extrinsic contribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信