{"title":"靶向TGF-β受体I激酶的脂环融合吡唑衍生物基于结构的设计:分子对接和动力学见解","authors":"Natarajan Saravanakumar, Arunagiri Sivanesan Aruna Poorani, Ganesapandian Latha, Anantha Krishnan Dhanabalan, Srimari Srikanth, Venkatasubramanian Ulaganathan, Palaniswamy Suresh","doi":"10.1007/s10822-025-00647-8","DOIUrl":null,"url":null,"abstract":"<div><p>TGF-β receptor I kinase plays a significant role in cancer biology and is a well-established target for cancer drug development, as evidenced by active molecules like Galunisertib (LY2157229). Computational studies were conducted to analyse the catalytic site of TGF-β receptor I kinase, identifying key amino acid residues essential for binding. Based on these findings, Alicyclic fused pyrazole derivatives were designed. The target molecules were synthesized through a multi-step process, with an important intermediate obtained via Suzuki coupling, followed by various ligand and catalyst optimizations. A total of thirteen molecules were synthesized by optimizing temperature, solvent, and base. After characterization, the synthesized, Alicyclic fused pyrazole derivatives were screened for TGF-β receptor I kinase inhibition and in vitro cytotoxic activity. To further elucidate their binding mechanism, molecular docking and molecular dynamics studies were performed. The most active compound <b>16c</b>, was subjected to in silico ADME screening, which revealed a favorable pharmacokinetic profile. Molecular Dynamics simulation study indicated that specific aminoacid residue interaction with TGF-β receptor I kinase. Additionally, DFT calculations were conducted on the active molecules to gain deeper insights into their electronic properties, supporting their potential as effective anticancer agents.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"39 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-based design of alicyclic fused pyrazole derivatives for targeting TGF-β receptor I kinase: molecular docking and dynamics insights\",\"authors\":\"Natarajan Saravanakumar, Arunagiri Sivanesan Aruna Poorani, Ganesapandian Latha, Anantha Krishnan Dhanabalan, Srimari Srikanth, Venkatasubramanian Ulaganathan, Palaniswamy Suresh\",\"doi\":\"10.1007/s10822-025-00647-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>TGF-β receptor I kinase plays a significant role in cancer biology and is a well-established target for cancer drug development, as evidenced by active molecules like Galunisertib (LY2157229). Computational studies were conducted to analyse the catalytic site of TGF-β receptor I kinase, identifying key amino acid residues essential for binding. Based on these findings, Alicyclic fused pyrazole derivatives were designed. The target molecules were synthesized through a multi-step process, with an important intermediate obtained via Suzuki coupling, followed by various ligand and catalyst optimizations. A total of thirteen molecules were synthesized by optimizing temperature, solvent, and base. After characterization, the synthesized, Alicyclic fused pyrazole derivatives were screened for TGF-β receptor I kinase inhibition and in vitro cytotoxic activity. To further elucidate their binding mechanism, molecular docking and molecular dynamics studies were performed. The most active compound <b>16c</b>, was subjected to in silico ADME screening, which revealed a favorable pharmacokinetic profile. Molecular Dynamics simulation study indicated that specific aminoacid residue interaction with TGF-β receptor I kinase. Additionally, DFT calculations were conducted on the active molecules to gain deeper insights into their electronic properties, supporting their potential as effective anticancer agents.</p></div>\",\"PeriodicalId\":621,\"journal\":{\"name\":\"Journal of Computer-Aided Molecular Design\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer-Aided Molecular Design\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-025-00647-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-025-00647-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structure-based design of alicyclic fused pyrazole derivatives for targeting TGF-β receptor I kinase: molecular docking and dynamics insights
TGF-β receptor I kinase plays a significant role in cancer biology and is a well-established target for cancer drug development, as evidenced by active molecules like Galunisertib (LY2157229). Computational studies were conducted to analyse the catalytic site of TGF-β receptor I kinase, identifying key amino acid residues essential for binding. Based on these findings, Alicyclic fused pyrazole derivatives were designed. The target molecules were synthesized through a multi-step process, with an important intermediate obtained via Suzuki coupling, followed by various ligand and catalyst optimizations. A total of thirteen molecules were synthesized by optimizing temperature, solvent, and base. After characterization, the synthesized, Alicyclic fused pyrazole derivatives were screened for TGF-β receptor I kinase inhibition and in vitro cytotoxic activity. To further elucidate their binding mechanism, molecular docking and molecular dynamics studies were performed. The most active compound 16c, was subjected to in silico ADME screening, which revealed a favorable pharmacokinetic profile. Molecular Dynamics simulation study indicated that specific aminoacid residue interaction with TGF-β receptor I kinase. Additionally, DFT calculations were conducted on the active molecules to gain deeper insights into their electronic properties, supporting their potential as effective anticancer agents.
期刊介绍:
The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas:
- theoretical chemistry;
- computational chemistry;
- computer and molecular graphics;
- molecular modeling;
- protein engineering;
- drug design;
- expert systems;
- general structure-property relationships;
- molecular dynamics;
- chemical database development and usage.