Mathieu Calvat, Chris Bean, Dhruv Anjaria, Hyoungryul Park, Haoren Wang, Kenneth Vecchio, J. C. Stinville
{"title":"通过衍射潜空间特征的空间映射了解金属微观结构的非均质性","authors":"Mathieu Calvat, Chris Bean, Dhruv Anjaria, Hyoungryul Park, Haoren Wang, Kenneth Vecchio, J. C. Stinville","doi":"10.1038/s41524-025-01770-8","DOIUrl":null,"url":null,"abstract":"<p>To leverage advancements in machine learning for metallic materials design and property prediction, it is crucial to develop a data-reduced representation of metal microstructures that surpasses the limitations of current physics-based discrete microstructure descriptors. This need is particularly relevant for metallic materials processed through additive manufacturing, which exhibit complex hierarchical microstructures that cannot be adequately described using the conventional metrics typically applied to wrought materials. Furthermore, capturing the spatial heterogeneity of microstructures at the different scales is necessary within such framework to accurately predict their properties. To address these challenges, we propose the physical spatial mapping of metal diffraction latent space features. This approach integrates (i) point diffraction data encoding via variational autoencoders or contrastive learning and (ii) the physical mapping of the encoded values. Together, these steps offer a method to comprehensively describe metal microstructures. We demonstrate this approach on a wrought and additively manufactured alloy, showing that it effectively encodes microstructural information and enables direct identification of microstructural heterogeneity not directly possible by physics-based models. This data-reduced microstructure representation opens the application of machine learning models in accelerating metallic material design and accurately predicting their properties.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"31 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning metal microstructural heterogeneity through spatial mapping of diffraction latent space features\",\"authors\":\"Mathieu Calvat, Chris Bean, Dhruv Anjaria, Hyoungryul Park, Haoren Wang, Kenneth Vecchio, J. C. Stinville\",\"doi\":\"10.1038/s41524-025-01770-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To leverage advancements in machine learning for metallic materials design and property prediction, it is crucial to develop a data-reduced representation of metal microstructures that surpasses the limitations of current physics-based discrete microstructure descriptors. This need is particularly relevant for metallic materials processed through additive manufacturing, which exhibit complex hierarchical microstructures that cannot be adequately described using the conventional metrics typically applied to wrought materials. Furthermore, capturing the spatial heterogeneity of microstructures at the different scales is necessary within such framework to accurately predict their properties. To address these challenges, we propose the physical spatial mapping of metal diffraction latent space features. This approach integrates (i) point diffraction data encoding via variational autoencoders or contrastive learning and (ii) the physical mapping of the encoded values. Together, these steps offer a method to comprehensively describe metal microstructures. We demonstrate this approach on a wrought and additively manufactured alloy, showing that it effectively encodes microstructural information and enables direct identification of microstructural heterogeneity not directly possible by physics-based models. This data-reduced microstructure representation opens the application of machine learning models in accelerating metallic material design and accurately predicting their properties.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01770-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01770-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Learning metal microstructural heterogeneity through spatial mapping of diffraction latent space features
To leverage advancements in machine learning for metallic materials design and property prediction, it is crucial to develop a data-reduced representation of metal microstructures that surpasses the limitations of current physics-based discrete microstructure descriptors. This need is particularly relevant for metallic materials processed through additive manufacturing, which exhibit complex hierarchical microstructures that cannot be adequately described using the conventional metrics typically applied to wrought materials. Furthermore, capturing the spatial heterogeneity of microstructures at the different scales is necessary within such framework to accurately predict their properties. To address these challenges, we propose the physical spatial mapping of metal diffraction latent space features. This approach integrates (i) point diffraction data encoding via variational autoencoders or contrastive learning and (ii) the physical mapping of the encoded values. Together, these steps offer a method to comprehensively describe metal microstructures. We demonstrate this approach on a wrought and additively manufactured alloy, showing that it effectively encodes microstructural information and enables direct identification of microstructural heterogeneity not directly possible by physics-based models. This data-reduced microstructure representation opens the application of machine learning models in accelerating metallic material design and accurately predicting their properties.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.