平面环四氮二维磁体的机器学习增强设计:从量子到中尺度的环境热稳定性

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Dong Fan, Ke Zheng, Hongfang Li, Junjie He, Pengbo Lyu
{"title":"平面环四氮二维磁体的机器学习增强设计:从量子到中尺度的环境热稳定性","authors":"Dong Fan, Ke Zheng, Hongfang Li, Junjie He, Pengbo Lyu","doi":"10.1038/s41524-025-01763-7","DOIUrl":null,"url":null,"abstract":"<p>Synthesizing polynitrogen compounds that remain stable at ambient conditions is particularly challenging because species beyond the N ≡ N triple bond are inherently unstable. In this study, we combine first-principles calculations with a machine-learning potential (MLP) to investigate the ambient stability of planar <i>cyclo</i>-N<sub>4</sub> units embedded in a two-dimensional t-FeN<sub>4</sub> monolayer. Our results show that strong Fe–N coordination inhibits N ≡ N reformation, enabling the square <i>cyclo</i>-N<sub>4</sub> motif to remain dynamically stable and covalently bonded without high-pressure synthesis. Furthermore, this structure exhibits tunable magnetic anisotropy and a Néel temperature above 600 K, indicating potential for room-temperature spintronic applications. The MLP also enables the simulation of systems comprising over 100,000 atoms, including periodic sheets, nanoribbons, nanomatrices and nanosheets, revealing their structural integrity under thermal fluctuations. These results demonstrate that two-dimensional confinement provides a promising route to stabilize exotic nitrogen topologies, linking quantum-mechanical accuracy with mesoscale modelling for future spin-based technologies.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"141 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning augmented design of 2D magnet with planar cyclo-tetranitrogen: ambient thermal stability from quantum to mesoscale\",\"authors\":\"Dong Fan, Ke Zheng, Hongfang Li, Junjie He, Pengbo Lyu\",\"doi\":\"10.1038/s41524-025-01763-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Synthesizing polynitrogen compounds that remain stable at ambient conditions is particularly challenging because species beyond the N ≡ N triple bond are inherently unstable. In this study, we combine first-principles calculations with a machine-learning potential (MLP) to investigate the ambient stability of planar <i>cyclo</i>-N<sub>4</sub> units embedded in a two-dimensional t-FeN<sub>4</sub> monolayer. Our results show that strong Fe–N coordination inhibits N ≡ N reformation, enabling the square <i>cyclo</i>-N<sub>4</sub> motif to remain dynamically stable and covalently bonded without high-pressure synthesis. Furthermore, this structure exhibits tunable magnetic anisotropy and a Néel temperature above 600 K, indicating potential for room-temperature spintronic applications. The MLP also enables the simulation of systems comprising over 100,000 atoms, including periodic sheets, nanoribbons, nanomatrices and nanosheets, revealing their structural integrity under thermal fluctuations. These results demonstrate that two-dimensional confinement provides a promising route to stabilize exotic nitrogen topologies, linking quantum-mechanical accuracy with mesoscale modelling for future spin-based technologies.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01763-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01763-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

合成在环境条件下保持稳定的多氮化合物尤其具有挑战性,因为N≡N三键以外的物质本身就不稳定。在这项研究中,我们结合第一性原理计算和机器学习潜力(MLP)来研究嵌入二维t-FeN4单层中的平面环- n4单元的环境稳定性。我们的研究结果表明,强Fe-N配位抑制N≡N重组,使方形环- n4基序保持动态稳定和共价键,无需高压合成。此外,该结构具有可调谐的磁各向异性和高于600 K的纳米温度,表明其具有室温自旋电子应用的潜力。MLP还可以模拟包含超过100,000个原子的系统,包括元素周期表、纳米带、纳米矩阵和纳米片,揭示它们在热波动下的结构完整性。这些结果表明,二维约束为稳定外来氮拓扑提供了一条有前途的途径,将量子力学精度与未来基于自旋的技术的中尺度建模联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning augmented design of 2D magnet with planar cyclo-tetranitrogen: ambient thermal stability from quantum to mesoscale

Machine learning augmented design of 2D magnet with planar cyclo-tetranitrogen: ambient thermal stability from quantum to mesoscale

Synthesizing polynitrogen compounds that remain stable at ambient conditions is particularly challenging because species beyond the N ≡ N triple bond are inherently unstable. In this study, we combine first-principles calculations with a machine-learning potential (MLP) to investigate the ambient stability of planar cyclo-N4 units embedded in a two-dimensional t-FeN4 monolayer. Our results show that strong Fe–N coordination inhibits N ≡ N reformation, enabling the square cyclo-N4 motif to remain dynamically stable and covalently bonded without high-pressure synthesis. Furthermore, this structure exhibits tunable magnetic anisotropy and a Néel temperature above 600 K, indicating potential for room-temperature spintronic applications. The MLP also enables the simulation of systems comprising over 100,000 atoms, including periodic sheets, nanoribbons, nanomatrices and nanosheets, revealing their structural integrity under thermal fluctuations. These results demonstrate that two-dimensional confinement provides a promising route to stabilize exotic nitrogen topologies, linking quantum-mechanical accuracy with mesoscale modelling for future spin-based technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信