通过比较代谢组学分析,揭示了小石鱼和日本鱼对寒冷的反应

IF 2.2 4区 生物学 Q2 PLANT SCIENCES
Xueru Jiang, Siyu Lu, Shuping Tu, Junhuo Cai, Wei Liu
{"title":"通过比较代谢组学分析,揭示了小石鱼和日本鱼对寒冷的反应","authors":"Xueru Jiang,&nbsp;Siyu Lu,&nbsp;Shuping Tu,&nbsp;Junhuo Cai,&nbsp;Wei Liu","doi":"10.1007/s11738-025-03830-4","DOIUrl":null,"url":null,"abstract":"<div><p><i>Euscaphis konishii</i> and <i>Euscaphis japonica</i> are shrubs or small trees belonging to the Staphyleaceae family and are excellent ornamental fruit plants with high ornamental and medicinal value. There are a few studies on the cold tolerance of <i>E. konishii</i> and <i>E. japonica</i>, and their metabolic response to cold is not clear. Here, the non-targeted metabolomics (GC‒MS) technique was used to elucidate the response of <i>E. konishii</i> and <i>E. japonica</i> to cold at the metabolic level. Under cold treatment, <i>E. konishii</i> exhibited 10 upregulated and 1 downregulated differentially expressed metabolites (DEMs), whereas 10 upregulated and 7 downregulated DEMs were identified in <i>E. japonica</i>. The contents of key metabolites, such as sugars including raffinose and glucose-6-phosphate, amino acids including lysine and methionine 2, unsaturated fatty acids including linoleic acid, and flavonoid compounds including neohesperidin, were increased in <i>E. konishii</i> in response to cold. The contents of key metabolites, such as sugars including raffinose, trehalose, and fructose-6-phosphate, amino acids including aspartic acid 1 and aspartic acid 2, and organic acids including pyruvate and taurine, were increased, and sugars of sedoheptulose, organic acids of α-ketoglutaric acid, flavonoid compounds of hesperidin were decreased in <i>E. japonica</i> in response to cold. DEMs in <i>E. konishii</i> were significantly enriched in “linoleic acid metabolism,” while the DEMs in <i>E. japonica</i> were significantly enriched in “monobactam biosynthesis,” “cysteine and methionine metabolism,” “taurine and hypotaurine metabolism,” “sulfur metabolism,” and “ABC transporters.” This research expounds the metabolic differences of <i>E. konishii</i> and <i>E. japonica</i> in response to cold and provides a foundation for improving their resistance to cold stress.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative metabolomics analysis reveals the response of Euscaphis konishii and Euscaphis japonica to cold\",\"authors\":\"Xueru Jiang,&nbsp;Siyu Lu,&nbsp;Shuping Tu,&nbsp;Junhuo Cai,&nbsp;Wei Liu\",\"doi\":\"10.1007/s11738-025-03830-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>Euscaphis konishii</i> and <i>Euscaphis japonica</i> are shrubs or small trees belonging to the Staphyleaceae family and are excellent ornamental fruit plants with high ornamental and medicinal value. There are a few studies on the cold tolerance of <i>E. konishii</i> and <i>E. japonica</i>, and their metabolic response to cold is not clear. Here, the non-targeted metabolomics (GC‒MS) technique was used to elucidate the response of <i>E. konishii</i> and <i>E. japonica</i> to cold at the metabolic level. Under cold treatment, <i>E. konishii</i> exhibited 10 upregulated and 1 downregulated differentially expressed metabolites (DEMs), whereas 10 upregulated and 7 downregulated DEMs were identified in <i>E. japonica</i>. The contents of key metabolites, such as sugars including raffinose and glucose-6-phosphate, amino acids including lysine and methionine 2, unsaturated fatty acids including linoleic acid, and flavonoid compounds including neohesperidin, were increased in <i>E. konishii</i> in response to cold. The contents of key metabolites, such as sugars including raffinose, trehalose, and fructose-6-phosphate, amino acids including aspartic acid 1 and aspartic acid 2, and organic acids including pyruvate and taurine, were increased, and sugars of sedoheptulose, organic acids of α-ketoglutaric acid, flavonoid compounds of hesperidin were decreased in <i>E. japonica</i> in response to cold. DEMs in <i>E. konishii</i> were significantly enriched in “linoleic acid metabolism,” while the DEMs in <i>E. japonica</i> were significantly enriched in “monobactam biosynthesis,” “cysteine and methionine metabolism,” “taurine and hypotaurine metabolism,” “sulfur metabolism,” and “ABC transporters.” This research expounds the metabolic differences of <i>E. konishii</i> and <i>E. japonica</i> in response to cold and provides a foundation for improving their resistance to cold stress.</p></div>\",\"PeriodicalId\":6973,\"journal\":{\"name\":\"Acta Physiologiae Plantarum\",\"volume\":\"47 9\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physiologiae Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11738-025-03830-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologiae Plantarum","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-025-03830-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

秋香和秋香是葡萄科灌木或小乔木,是具有较高观赏和药用价值的优良观赏果树。目前关于小石芥和粳稻耐冷性的研究较少,其对冷的代谢反应尚不清楚。本研究采用非靶向代谢组学(non-targeted metabolomics, GC-MS)技术,从代谢水平上分析了konishii E.和japonica E.对低温的响应。冷处理条件下,小石叶蓟有10个差异表达代谢物上调,1个差异表达代谢物下调,而粳稻有10个差异表达代谢物上调,7个差异表达代谢物下调。在低温条件下,小石叶的主要代谢产物如棉子糖和葡萄糖-6-磷酸、赖氨酸和蛋氨酸2等氨基酸、亚油酸等不饱和脂肪酸和新橘皮苷等类黄酮含量均有所增加。在低温条件下,棉子糖、海藻糖、果糖-6-磷酸、天冬氨酸1、天冬氨酸2、丙酮酸、牛磺酸等主要代谢物的含量增加,糖葡聚糖、α-酮戊二酸有机酸、橘皮苷类黄酮化合物含量降低。konishii的DEMs显著富集于“亚油酸代谢”,而日本稻的DEMs显著富集于“单巴塔姆生物合成”、“半胱氨酸和蛋氨酸代谢”、“牛磺酸和次牛磺酸代谢”、“硫代谢”和“ABC转运蛋白”。本研究阐明了小石芥和粳稻在寒冷条件下的代谢差异,为提高其抗寒性提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative metabolomics analysis reveals the response of Euscaphis konishii and Euscaphis japonica to cold

Euscaphis konishii and Euscaphis japonica are shrubs or small trees belonging to the Staphyleaceae family and are excellent ornamental fruit plants with high ornamental and medicinal value. There are a few studies on the cold tolerance of E. konishii and E. japonica, and their metabolic response to cold is not clear. Here, the non-targeted metabolomics (GC‒MS) technique was used to elucidate the response of E. konishii and E. japonica to cold at the metabolic level. Under cold treatment, E. konishii exhibited 10 upregulated and 1 downregulated differentially expressed metabolites (DEMs), whereas 10 upregulated and 7 downregulated DEMs were identified in E. japonica. The contents of key metabolites, such as sugars including raffinose and glucose-6-phosphate, amino acids including lysine and methionine 2, unsaturated fatty acids including linoleic acid, and flavonoid compounds including neohesperidin, were increased in E. konishii in response to cold. The contents of key metabolites, such as sugars including raffinose, trehalose, and fructose-6-phosphate, amino acids including aspartic acid 1 and aspartic acid 2, and organic acids including pyruvate and taurine, were increased, and sugars of sedoheptulose, organic acids of α-ketoglutaric acid, flavonoid compounds of hesperidin were decreased in E. japonica in response to cold. DEMs in E. konishii were significantly enriched in “linoleic acid metabolism,” while the DEMs in E. japonica were significantly enriched in “monobactam biosynthesis,” “cysteine and methionine metabolism,” “taurine and hypotaurine metabolism,” “sulfur metabolism,” and “ABC transporters.” This research expounds the metabolic differences of E. konishii and E. japonica in response to cold and provides a foundation for improving their resistance to cold stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physiologiae Plantarum
Acta Physiologiae Plantarum 生物-植物科学
CiteScore
5.10
自引率
3.80%
发文量
125
审稿时长
3.1 months
期刊介绍: Acta Physiologiae Plantarum is an international journal established in 1978 that publishes peer-reviewed articles on all aspects of plant physiology. The coverage ranges across this research field at various levels of biological organization, from relevant aspects in molecular and cell biology to biochemistry. The coverage is global in scope, offering articles of interest from experts around the world. The range of topics includes measuring effects of environmental pollution on crop species; analysis of genomic organization; effects of drought and climatic conditions on plants; studies of photosynthesis in ornamental plants, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信