{"title":"不同温度下聚乙二醇催种对大豆生理生化的影响","authors":"Simranpreet Singh Bola, Harpreet Kaur Virk, Navjyot Kaur","doi":"10.1007/s11738-025-03822-4","DOIUrl":null,"url":null,"abstract":"<div><p>Unfavorable temperatures during germination can significantly disrupt the physiological and biochemical processes crucial for seed germination, posing a challenge to soybean crop establishment and overall yield potential. Seed priming has emerged as a technique that has the potential to enhance crop establishment under high-temperature stress conditions. The presented study evaluated the impact of seed priming [without seed priming, hydropriming, and osmopriming with polyethylene glycol (PEG) 6000 @ −0.5, −1.0, −1.5 and −2.0 megapascal (MPa) for 6 h] at different temperatures (25, 30, 35, and 40℃) on physiological and biochemical parameters under controlled conditions. The experiment was conducted twice in factorial complete randomized design, each replicated four times. The results showed that seed priming with PEG @ −1.5 MPa recorded higher speed of germination, germination percentage, total seedling length, seedling dry weight, and vigor indices at 30 °C than other seed priming treatments and temperatures. Seed treated with PEG @ −1.5 MPa recorded higher speed of germination (15.3 and 8.2%), seedling vigor index I and II (19.6% and 13.0%, and 10.3% and 6.5%) over control and hydropriming, respectively. Compared to other priming treatments, PEG @ −1.5 MPa primed seeds exhibited significantly lower electrical conductivity, higher dehydrogenase activity, and higher percentage of stained seeds at the different temperatures tested (25, 30, 35, and 40℃). This implies that seed priming with PEG @ −1.5 MPa could serve as a valuable method to enhance the physiological and biochemical parameters of soybean at high temperatures, potentially fostering early plant development and augmenting yield potential.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiological and biochemical responses to seed priming with polyethylene glycol under variable temperatures in soybean\",\"authors\":\"Simranpreet Singh Bola, Harpreet Kaur Virk, Navjyot Kaur\",\"doi\":\"10.1007/s11738-025-03822-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unfavorable temperatures during germination can significantly disrupt the physiological and biochemical processes crucial for seed germination, posing a challenge to soybean crop establishment and overall yield potential. Seed priming has emerged as a technique that has the potential to enhance crop establishment under high-temperature stress conditions. The presented study evaluated the impact of seed priming [without seed priming, hydropriming, and osmopriming with polyethylene glycol (PEG) 6000 @ −0.5, −1.0, −1.5 and −2.0 megapascal (MPa) for 6 h] at different temperatures (25, 30, 35, and 40℃) on physiological and biochemical parameters under controlled conditions. The experiment was conducted twice in factorial complete randomized design, each replicated four times. The results showed that seed priming with PEG @ −1.5 MPa recorded higher speed of germination, germination percentage, total seedling length, seedling dry weight, and vigor indices at 30 °C than other seed priming treatments and temperatures. Seed treated with PEG @ −1.5 MPa recorded higher speed of germination (15.3 and 8.2%), seedling vigor index I and II (19.6% and 13.0%, and 10.3% and 6.5%) over control and hydropriming, respectively. Compared to other priming treatments, PEG @ −1.5 MPa primed seeds exhibited significantly lower electrical conductivity, higher dehydrogenase activity, and higher percentage of stained seeds at the different temperatures tested (25, 30, 35, and 40℃). This implies that seed priming with PEG @ −1.5 MPa could serve as a valuable method to enhance the physiological and biochemical parameters of soybean at high temperatures, potentially fostering early plant development and augmenting yield potential.</p></div>\",\"PeriodicalId\":6973,\"journal\":{\"name\":\"Acta Physiologiae Plantarum\",\"volume\":\"47 9\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physiologiae Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11738-025-03822-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologiae Plantarum","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-025-03822-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Physiological and biochemical responses to seed priming with polyethylene glycol under variable temperatures in soybean
Unfavorable temperatures during germination can significantly disrupt the physiological and biochemical processes crucial for seed germination, posing a challenge to soybean crop establishment and overall yield potential. Seed priming has emerged as a technique that has the potential to enhance crop establishment under high-temperature stress conditions. The presented study evaluated the impact of seed priming [without seed priming, hydropriming, and osmopriming with polyethylene glycol (PEG) 6000 @ −0.5, −1.0, −1.5 and −2.0 megapascal (MPa) for 6 h] at different temperatures (25, 30, 35, and 40℃) on physiological and biochemical parameters under controlled conditions. The experiment was conducted twice in factorial complete randomized design, each replicated four times. The results showed that seed priming with PEG @ −1.5 MPa recorded higher speed of germination, germination percentage, total seedling length, seedling dry weight, and vigor indices at 30 °C than other seed priming treatments and temperatures. Seed treated with PEG @ −1.5 MPa recorded higher speed of germination (15.3 and 8.2%), seedling vigor index I and II (19.6% and 13.0%, and 10.3% and 6.5%) over control and hydropriming, respectively. Compared to other priming treatments, PEG @ −1.5 MPa primed seeds exhibited significantly lower electrical conductivity, higher dehydrogenase activity, and higher percentage of stained seeds at the different temperatures tested (25, 30, 35, and 40℃). This implies that seed priming with PEG @ −1.5 MPa could serve as a valuable method to enhance the physiological and biochemical parameters of soybean at high temperatures, potentially fostering early plant development and augmenting yield potential.
期刊介绍:
Acta Physiologiae Plantarum is an international journal established in 1978 that publishes peer-reviewed articles on all aspects of plant physiology. The coverage ranges across this research field at various levels of biological organization, from relevant aspects in molecular and cell biology to biochemistry.
The coverage is global in scope, offering articles of interest from experts around the world. The range of topics includes measuring effects of environmental pollution on crop species; analysis of genomic organization; effects of drought and climatic conditions on plants; studies of photosynthesis in ornamental plants, and more.