{"title":"希腊橄榄品种生产的橄榄油的遗传和化学分析:与脂肪酸组成和酚稳定性的遗传谱联系","authors":"Annia Tsolakou , Kostas Ioannidis , Sofia Lymperopoulou , Panagiotis Diamantakos , Georgios Kostelenos , Eleni Melliou , Prokopios Magiatis","doi":"10.1016/j.fochms.2025.100292","DOIUrl":null,"url":null,"abstract":"<div><div>This pilot study explores the relationship between the genetic profiles of olive cultivars and monounsaturated fatty acid (MUFA) content of their oils, with emphasis on oxidative stability and phenolic integrity. Our working hypothesis was that cultivar-specific genetic variation in MUFA content, directly affects the oxidative stability of key phenolics, particularly oleocanthal and oleacein. To examine the association between genetic clustering and oleic acid content, eighty Greek olive cultivars cultivated under controlled nursery conditions were genotyped using eleven genomic simple sequence repeat (SSR) markers, and their fatty acid composition was determined by <sup>1</sup>H NMR. Phenolic stability was tested using oils with contrasting MUFA levels. Genetic analysis identified three clusters. Chemical cluster analysis, by dividing cultivars into three MUFA classes, revealed significant differences among divisions. Linking genetic and lipid profile groups highlighted notable overlap. This study reveals a clear experimental association between MUFA abundance in the olive matrix and its capacity to preserve phenolic integrity. By confirming the role of MUFA content in phenolic stability, our results provide a baseline reference for early-stage cultivar selection and for future breeding programs targeting enhanced olive oil quality.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"11 ","pages":"Article 100292"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic and chemical analysis of olive oil produced by Greek olive cultivars: Linking genetic profiles with fatty acid composition and phenolic stability\",\"authors\":\"Annia Tsolakou , Kostas Ioannidis , Sofia Lymperopoulou , Panagiotis Diamantakos , Georgios Kostelenos , Eleni Melliou , Prokopios Magiatis\",\"doi\":\"10.1016/j.fochms.2025.100292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This pilot study explores the relationship between the genetic profiles of olive cultivars and monounsaturated fatty acid (MUFA) content of their oils, with emphasis on oxidative stability and phenolic integrity. Our working hypothesis was that cultivar-specific genetic variation in MUFA content, directly affects the oxidative stability of key phenolics, particularly oleocanthal and oleacein. To examine the association between genetic clustering and oleic acid content, eighty Greek olive cultivars cultivated under controlled nursery conditions were genotyped using eleven genomic simple sequence repeat (SSR) markers, and their fatty acid composition was determined by <sup>1</sup>H NMR. Phenolic stability was tested using oils with contrasting MUFA levels. Genetic analysis identified three clusters. Chemical cluster analysis, by dividing cultivars into three MUFA classes, revealed significant differences among divisions. Linking genetic and lipid profile groups highlighted notable overlap. This study reveals a clear experimental association between MUFA abundance in the olive matrix and its capacity to preserve phenolic integrity. By confirming the role of MUFA content in phenolic stability, our results provide a baseline reference for early-stage cultivar selection and for future breeding programs targeting enhanced olive oil quality.</div></div>\",\"PeriodicalId\":34477,\"journal\":{\"name\":\"Food Chemistry Molecular Sciences\",\"volume\":\"11 \",\"pages\":\"Article 100292\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266656622500053X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266656622500053X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Genetic and chemical analysis of olive oil produced by Greek olive cultivars: Linking genetic profiles with fatty acid composition and phenolic stability
This pilot study explores the relationship between the genetic profiles of olive cultivars and monounsaturated fatty acid (MUFA) content of their oils, with emphasis on oxidative stability and phenolic integrity. Our working hypothesis was that cultivar-specific genetic variation in MUFA content, directly affects the oxidative stability of key phenolics, particularly oleocanthal and oleacein. To examine the association between genetic clustering and oleic acid content, eighty Greek olive cultivars cultivated under controlled nursery conditions were genotyped using eleven genomic simple sequence repeat (SSR) markers, and their fatty acid composition was determined by 1H NMR. Phenolic stability was tested using oils with contrasting MUFA levels. Genetic analysis identified three clusters. Chemical cluster analysis, by dividing cultivars into three MUFA classes, revealed significant differences among divisions. Linking genetic and lipid profile groups highlighted notable overlap. This study reveals a clear experimental association between MUFA abundance in the olive matrix and its capacity to preserve phenolic integrity. By confirming the role of MUFA content in phenolic stability, our results provide a baseline reference for early-stage cultivar selection and for future breeding programs targeting enhanced olive oil quality.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.