Zhixiao Liu, Yi Xiao, Jiaying Xie, Huiwen Zhang, Qiming Huang, Óscar Monroig, Douglas R. Tocher, Xiaojuan Liu, Fan Lin, Cuiying Chen, Shuqi Wang, Ruixin Li
{"title":"尼罗罗非鱼肝脏抗氧化能力和线粒体功能受损与胆固醇积累引起的氧化应激有关","authors":"Zhixiao Liu, Yi Xiao, Jiaying Xie, Huiwen Zhang, Qiming Huang, Óscar Monroig, Douglas R. Tocher, Xiaojuan Liu, Fan Lin, Cuiying Chen, Shuqi Wang, Ruixin Li","doi":"10.1155/anu/7643962","DOIUrl":null,"url":null,"abstract":"<p>In mammals, cholesterol accumulation in tissues often results in health damage, such as oxidative stress. In contrast, the adverse effects of cholesterol accumulation on the physiological health of fish remain largely unexplored. The present study investigated the impacts of cholesterol accumulation on oxidative stress and the potential mechanisms involved in Nile tilapia (<i>Oreochromis niloticus</i>). Thus, Nile tilapia were fed either a control diet (C) or a high-cholesterol (1.6%, HC) diet for 8 weeks. The viscero-somatic (VSIs) and hepatosomatic indices (HSIs) were increased significantly in fish fed the HC diet and, in accordance, HC intake caused the accumulation of cholesterol in the liver, intestine, head kidney, and spleen. Intake of the HC diet, affected oxidative stress as evidenced by elevated malondialdehyde (MDA) levels in the liver and head kidney and reduced catalase (CAT) activities in the liver and spleen, while SOD activities were increased in the spleen and intestine. Moreover, cholesterol accumulation induced endoplasmic reticulum (ER) stress, inflammation, and apoptosis in the liver and head kidney, as evidenced by increased expression levels of key genes. Metabolome analysis indicated that metabolite levels in tilapia fed the HC diet were primarily enriched in glutathione metabolism and the tricarboxylic acid cycle (TCA), with significantly reduced levels of glutamine, glutamate, glycine, citrate, isocitrate, aconitate, malate, and oxalate. In addition, transmission electron microscopy (TEM) analysis showed accumulation of lipid droplets and distinct alterations in the morphology of mitochondria within hepatocytes of tilapia fed HC. Moreover, significantly increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were found in fish fed the HC diet. Overall, the data suggested that HC intake induced oxidative stress, which might be associated with impaired antioxidant capability and mitochondrial function, as mitochondria are the primary site of producing cellular reactive oxygen species (ROS). The present study is the first to report the impacts of cholesterol accumulation on oxidative stress and health damage in fish, and suggested targeted cholesterol-lowering interventions as a promising therapeutic strategy for addressing health issues in aquatic animals.</p>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2025 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/7643962","citationCount":"0","resultStr":"{\"title\":\"Cholesterol Accumulation Caused Oxidative Stress Associated With Impaired Antioxidant Capability and Mitochondrial Function in the Liver of Nile Tilapia\",\"authors\":\"Zhixiao Liu, Yi Xiao, Jiaying Xie, Huiwen Zhang, Qiming Huang, Óscar Monroig, Douglas R. Tocher, Xiaojuan Liu, Fan Lin, Cuiying Chen, Shuqi Wang, Ruixin Li\",\"doi\":\"10.1155/anu/7643962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In mammals, cholesterol accumulation in tissues often results in health damage, such as oxidative stress. In contrast, the adverse effects of cholesterol accumulation on the physiological health of fish remain largely unexplored. The present study investigated the impacts of cholesterol accumulation on oxidative stress and the potential mechanisms involved in Nile tilapia (<i>Oreochromis niloticus</i>). Thus, Nile tilapia were fed either a control diet (C) or a high-cholesterol (1.6%, HC) diet for 8 weeks. The viscero-somatic (VSIs) and hepatosomatic indices (HSIs) were increased significantly in fish fed the HC diet and, in accordance, HC intake caused the accumulation of cholesterol in the liver, intestine, head kidney, and spleen. Intake of the HC diet, affected oxidative stress as evidenced by elevated malondialdehyde (MDA) levels in the liver and head kidney and reduced catalase (CAT) activities in the liver and spleen, while SOD activities were increased in the spleen and intestine. Moreover, cholesterol accumulation induced endoplasmic reticulum (ER) stress, inflammation, and apoptosis in the liver and head kidney, as evidenced by increased expression levels of key genes. Metabolome analysis indicated that metabolite levels in tilapia fed the HC diet were primarily enriched in glutathione metabolism and the tricarboxylic acid cycle (TCA), with significantly reduced levels of glutamine, glutamate, glycine, citrate, isocitrate, aconitate, malate, and oxalate. In addition, transmission electron microscopy (TEM) analysis showed accumulation of lipid droplets and distinct alterations in the morphology of mitochondria within hepatocytes of tilapia fed HC. Moreover, significantly increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were found in fish fed the HC diet. Overall, the data suggested that HC intake induced oxidative stress, which might be associated with impaired antioxidant capability and mitochondrial function, as mitochondria are the primary site of producing cellular reactive oxygen species (ROS). The present study is the first to report the impacts of cholesterol accumulation on oxidative stress and health damage in fish, and suggested targeted cholesterol-lowering interventions as a promising therapeutic strategy for addressing health issues in aquatic animals.</p>\",\"PeriodicalId\":8225,\"journal\":{\"name\":\"Aquaculture Nutrition\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/7643962\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/anu/7643962\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/anu/7643962","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Cholesterol Accumulation Caused Oxidative Stress Associated With Impaired Antioxidant Capability and Mitochondrial Function in the Liver of Nile Tilapia
In mammals, cholesterol accumulation in tissues often results in health damage, such as oxidative stress. In contrast, the adverse effects of cholesterol accumulation on the physiological health of fish remain largely unexplored. The present study investigated the impacts of cholesterol accumulation on oxidative stress and the potential mechanisms involved in Nile tilapia (Oreochromis niloticus). Thus, Nile tilapia were fed either a control diet (C) or a high-cholesterol (1.6%, HC) diet for 8 weeks. The viscero-somatic (VSIs) and hepatosomatic indices (HSIs) were increased significantly in fish fed the HC diet and, in accordance, HC intake caused the accumulation of cholesterol in the liver, intestine, head kidney, and spleen. Intake of the HC diet, affected oxidative stress as evidenced by elevated malondialdehyde (MDA) levels in the liver and head kidney and reduced catalase (CAT) activities in the liver and spleen, while SOD activities were increased in the spleen and intestine. Moreover, cholesterol accumulation induced endoplasmic reticulum (ER) stress, inflammation, and apoptosis in the liver and head kidney, as evidenced by increased expression levels of key genes. Metabolome analysis indicated that metabolite levels in tilapia fed the HC diet were primarily enriched in glutathione metabolism and the tricarboxylic acid cycle (TCA), with significantly reduced levels of glutamine, glutamate, glycine, citrate, isocitrate, aconitate, malate, and oxalate. In addition, transmission electron microscopy (TEM) analysis showed accumulation of lipid droplets and distinct alterations in the morphology of mitochondria within hepatocytes of tilapia fed HC. Moreover, significantly increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were found in fish fed the HC diet. Overall, the data suggested that HC intake induced oxidative stress, which might be associated with impaired antioxidant capability and mitochondrial function, as mitochondria are the primary site of producing cellular reactive oxygen species (ROS). The present study is the first to report the impacts of cholesterol accumulation on oxidative stress and health damage in fish, and suggested targeted cholesterol-lowering interventions as a promising therapeutic strategy for addressing health issues in aquatic animals.
期刊介绍:
Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers.
Aquaculture Nutrition publishes papers which strive to:
increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research.
improve understanding of the relationships between nutrition and the environmental impact of aquaculture.
increase understanding of the relationships between nutrition and processing, product quality, and the consumer.
help aquaculturalists improve their management and understanding of the complex discipline of nutrition.
help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.