Amirhossein Esteghamat;Zheng Hao;Mohammad Rezaei;Walid El Huni;Huseyin Cakmak;Gilberto Curatola;Samir Mouhoubi;Elison Matioli
{"title":"基于p型NiO/SiO2结三栅极的2.7 kV e型多通道GaN-on-Si","authors":"Amirhossein Esteghamat;Zheng Hao;Mohammad Rezaei;Walid El Huni;Huseyin Cakmak;Gilberto Curatola;Samir Mouhoubi;Elison Matioli","doi":"10.1109/LED.2025.3584531","DOIUrl":null,"url":null,"abstract":"In this work, an E-mode multichannel HEMT is demonstrated based on p-type NiO/SiO2 as a gate stack to form a junction tri-gate structure. NiO provides a high hole concentration (<inline-formula> <tex-math>$\\approx ~10^{{19}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>${}^{-{3}}$ </tex-math></inline-formula>), resulting in an effective depletion of electrons in the multiple 2DEG channels under the gate. A thin SiO2 layer acts as a sacrificial layer, preventing damage to the fins during NiO deposition. As a result, E-mode operation can be achieved with 3x-larger tri-gate fins, compared to SiO2 alone, with <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> of 0.7 V (at <inline-formula> <tex-math>$1~\\mu $ </tex-math></inline-formula>A/mm), negligible threshold voltage hysteresis (<inline-formula> <tex-math>$\\Delta {V}_{\\text {th}}$ </tex-math></inline-formula> of 0.05 V), together with small on-resistance (<inline-formula> <tex-math>${R}_{\\text {ON}}$ </tex-math></inline-formula>) of 2.8 m<inline-formula> <tex-math>$\\Omega \\cdot $ </tex-math></inline-formula>cm2 for a gate-to-drain separation (<inline-formula> <tex-math>${L}_{\\text {GD}}$ </tex-math></inline-formula>) of <inline-formula> <tex-math>$20~\\mu $ </tex-math></inline-formula>m. In addition, the devices showed exceptional off-state characteristics, including breakdown voltage (<inline-formula> <tex-math>${V}_{\\text {br}}$ </tex-math></inline-formula>) of 2.7 kV, and ON/OFF current ratio of <inline-formula> <tex-math>$10^{{9}}$ </tex-math></inline-formula>, showcasing the potential of the p-NiO/SiO2 gate stack for high-performance E-mode power devices.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 9","pages":"1589-1592"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2.7 kV E-Mode Multichannel GaN-on-Si Based on p-Type NiO/SiO2 Junction Tri-Gate\",\"authors\":\"Amirhossein Esteghamat;Zheng Hao;Mohammad Rezaei;Walid El Huni;Huseyin Cakmak;Gilberto Curatola;Samir Mouhoubi;Elison Matioli\",\"doi\":\"10.1109/LED.2025.3584531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an E-mode multichannel HEMT is demonstrated based on p-type NiO/SiO2 as a gate stack to form a junction tri-gate structure. NiO provides a high hole concentration (<inline-formula> <tex-math>$\\\\approx ~10^{{19}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>${}^{-{3}}$ </tex-math></inline-formula>), resulting in an effective depletion of electrons in the multiple 2DEG channels under the gate. A thin SiO2 layer acts as a sacrificial layer, preventing damage to the fins during NiO deposition. As a result, E-mode operation can be achieved with 3x-larger tri-gate fins, compared to SiO2 alone, with <inline-formula> <tex-math>${V}_{\\\\text {th}}$ </tex-math></inline-formula> of 0.7 V (at <inline-formula> <tex-math>$1~\\\\mu $ </tex-math></inline-formula>A/mm), negligible threshold voltage hysteresis (<inline-formula> <tex-math>$\\\\Delta {V}_{\\\\text {th}}$ </tex-math></inline-formula> of 0.05 V), together with small on-resistance (<inline-formula> <tex-math>${R}_{\\\\text {ON}}$ </tex-math></inline-formula>) of 2.8 m<inline-formula> <tex-math>$\\\\Omega \\\\cdot $ </tex-math></inline-formula>cm2 for a gate-to-drain separation (<inline-formula> <tex-math>${L}_{\\\\text {GD}}$ </tex-math></inline-formula>) of <inline-formula> <tex-math>$20~\\\\mu $ </tex-math></inline-formula>m. In addition, the devices showed exceptional off-state characteristics, including breakdown voltage (<inline-formula> <tex-math>${V}_{\\\\text {br}}$ </tex-math></inline-formula>) of 2.7 kV, and ON/OFF current ratio of <inline-formula> <tex-math>$10^{{9}}$ </tex-math></inline-formula>, showcasing the potential of the p-NiO/SiO2 gate stack for high-performance E-mode power devices.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 9\",\"pages\":\"1589-1592\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11059959/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11059959/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,展示了基于p型NiO/SiO2作为栅极堆栈形成结三栅极结构的e模多通道HEMT。NiO提供高空穴浓度($\approx ~10^{{19}}$ cm ${}^{-{3}}$),导致栅极下多个2DEG通道中的电子有效耗尽。薄的SiO2层作为牺牲层,防止在NiO沉积过程中损坏鳍片。因此,与单独使用SiO2相比,e模式工作可以通过3倍大的三栅极鳍片实现,${V}_{\text {th}}$为0.7 V ($1~\mu $ a /mm),可忽略的阈值电压滞后($\Delta {V}_{\text {th}}$为0.05 V),以及2.8 m的导通电阻(${R}_{\text {ON}}$) $\Omega \cdot $ cm2,栅极-漏极分离(${L}_{\text {GD}}$)为$20~\mu $ m。此外,器件表现出优异的断开状态特性。包括击穿电压(${V}_{\text {br}}$)为2.7 kV,开/关电流比为$10^{{9}}$,展示了p-NiO/SiO2栅极堆叠用于高性能e模功率器件的潜力。
2.7 kV E-Mode Multichannel GaN-on-Si Based on p-Type NiO/SiO2 Junction Tri-Gate
In this work, an E-mode multichannel HEMT is demonstrated based on p-type NiO/SiO2 as a gate stack to form a junction tri-gate structure. NiO provides a high hole concentration ($\approx ~10^{{19}}$ cm${}^{-{3}}$ ), resulting in an effective depletion of electrons in the multiple 2DEG channels under the gate. A thin SiO2 layer acts as a sacrificial layer, preventing damage to the fins during NiO deposition. As a result, E-mode operation can be achieved with 3x-larger tri-gate fins, compared to SiO2 alone, with ${V}_{\text {th}}$ of 0.7 V (at $1~\mu $ A/mm), negligible threshold voltage hysteresis ($\Delta {V}_{\text {th}}$ of 0.05 V), together with small on-resistance (${R}_{\text {ON}}$ ) of 2.8 m$\Omega \cdot $ cm2 for a gate-to-drain separation (${L}_{\text {GD}}$ ) of $20~\mu $ m. In addition, the devices showed exceptional off-state characteristics, including breakdown voltage (${V}_{\text {br}}$ ) of 2.7 kV, and ON/OFF current ratio of $10^{{9}}$ , showcasing the potential of the p-NiO/SiO2 gate stack for high-performance E-mode power devices.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.