基于p型NiO/SiO2结三栅极的2.7 kV e型多通道GaN-on-Si

IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Amirhossein Esteghamat;Zheng Hao;Mohammad Rezaei;Walid El Huni;Huseyin Cakmak;Gilberto Curatola;Samir Mouhoubi;Elison Matioli
{"title":"基于p型NiO/SiO2结三栅极的2.7 kV e型多通道GaN-on-Si","authors":"Amirhossein Esteghamat;Zheng Hao;Mohammad Rezaei;Walid El Huni;Huseyin Cakmak;Gilberto Curatola;Samir Mouhoubi;Elison Matioli","doi":"10.1109/LED.2025.3584531","DOIUrl":null,"url":null,"abstract":"In this work, an E-mode multichannel HEMT is demonstrated based on p-type NiO/SiO2 as a gate stack to form a junction tri-gate structure. NiO provides a high hole concentration (<inline-formula> <tex-math>$\\approx ~10^{{19}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>${}^{-{3}}$ </tex-math></inline-formula>), resulting in an effective depletion of electrons in the multiple 2DEG channels under the gate. A thin SiO2 layer acts as a sacrificial layer, preventing damage to the fins during NiO deposition. As a result, E-mode operation can be achieved with 3x-larger tri-gate fins, compared to SiO2 alone, with <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> of 0.7 V (at <inline-formula> <tex-math>$1~\\mu $ </tex-math></inline-formula>A/mm), negligible threshold voltage hysteresis (<inline-formula> <tex-math>$\\Delta {V}_{\\text {th}}$ </tex-math></inline-formula> of 0.05 V), together with small on-resistance (<inline-formula> <tex-math>${R}_{\\text {ON}}$ </tex-math></inline-formula>) of 2.8 m<inline-formula> <tex-math>$\\Omega \\cdot $ </tex-math></inline-formula>cm2 for a gate-to-drain separation (<inline-formula> <tex-math>${L}_{\\text {GD}}$ </tex-math></inline-formula>) of <inline-formula> <tex-math>$20~\\mu $ </tex-math></inline-formula>m. In addition, the devices showed exceptional off-state characteristics, including breakdown voltage (<inline-formula> <tex-math>${V}_{\\text {br}}$ </tex-math></inline-formula>) of 2.7 kV, and ON/OFF current ratio of <inline-formula> <tex-math>$10^{{9}}$ </tex-math></inline-formula>, showcasing the potential of the p-NiO/SiO2 gate stack for high-performance E-mode power devices.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 9","pages":"1589-1592"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2.7 kV E-Mode Multichannel GaN-on-Si Based on p-Type NiO/SiO2 Junction Tri-Gate\",\"authors\":\"Amirhossein Esteghamat;Zheng Hao;Mohammad Rezaei;Walid El Huni;Huseyin Cakmak;Gilberto Curatola;Samir Mouhoubi;Elison Matioli\",\"doi\":\"10.1109/LED.2025.3584531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an E-mode multichannel HEMT is demonstrated based on p-type NiO/SiO2 as a gate stack to form a junction tri-gate structure. NiO provides a high hole concentration (<inline-formula> <tex-math>$\\\\approx ~10^{{19}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>${}^{-{3}}$ </tex-math></inline-formula>), resulting in an effective depletion of electrons in the multiple 2DEG channels under the gate. A thin SiO2 layer acts as a sacrificial layer, preventing damage to the fins during NiO deposition. As a result, E-mode operation can be achieved with 3x-larger tri-gate fins, compared to SiO2 alone, with <inline-formula> <tex-math>${V}_{\\\\text {th}}$ </tex-math></inline-formula> of 0.7 V (at <inline-formula> <tex-math>$1~\\\\mu $ </tex-math></inline-formula>A/mm), negligible threshold voltage hysteresis (<inline-formula> <tex-math>$\\\\Delta {V}_{\\\\text {th}}$ </tex-math></inline-formula> of 0.05 V), together with small on-resistance (<inline-formula> <tex-math>${R}_{\\\\text {ON}}$ </tex-math></inline-formula>) of 2.8 m<inline-formula> <tex-math>$\\\\Omega \\\\cdot $ </tex-math></inline-formula>cm2 for a gate-to-drain separation (<inline-formula> <tex-math>${L}_{\\\\text {GD}}$ </tex-math></inline-formula>) of <inline-formula> <tex-math>$20~\\\\mu $ </tex-math></inline-formula>m. In addition, the devices showed exceptional off-state characteristics, including breakdown voltage (<inline-formula> <tex-math>${V}_{\\\\text {br}}$ </tex-math></inline-formula>) of 2.7 kV, and ON/OFF current ratio of <inline-formula> <tex-math>$10^{{9}}$ </tex-math></inline-formula>, showcasing the potential of the p-NiO/SiO2 gate stack for high-performance E-mode power devices.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 9\",\"pages\":\"1589-1592\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11059959/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11059959/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,展示了基于p型NiO/SiO2作为栅极堆栈形成结三栅极结构的e模多通道HEMT。NiO提供高空穴浓度($\approx ~10^{{19}}$ cm ${}^{-{3}}$),导致栅极下多个2DEG通道中的电子有效耗尽。薄的SiO2层作为牺牲层,防止在NiO沉积过程中损坏鳍片。因此,与单独使用SiO2相比,e模式工作可以通过3倍大的三栅极鳍片实现,${V}_{\text {th}}$为0.7 V ($1~\mu $ a /mm),可忽略的阈值电压滞后($\Delta {V}_{\text {th}}$为0.05 V),以及2.8 m的导通电阻(${R}_{\text {ON}}$) $\Omega \cdot $ cm2,栅极-漏极分离(${L}_{\text {GD}}$)为$20~\mu $ m。此外,器件表现出优异的断开状态特性。包括击穿电压(${V}_{\text {br}}$)为2.7 kV,开/关电流比为$10^{{9}}$,展示了p-NiO/SiO2栅极堆叠用于高性能e模功率器件的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2.7 kV E-Mode Multichannel GaN-on-Si Based on p-Type NiO/SiO2 Junction Tri-Gate
In this work, an E-mode multichannel HEMT is demonstrated based on p-type NiO/SiO2 as a gate stack to form a junction tri-gate structure. NiO provides a high hole concentration ( $\approx ~10^{{19}}$ cm ${}^{-{3}}$ ), resulting in an effective depletion of electrons in the multiple 2DEG channels under the gate. A thin SiO2 layer acts as a sacrificial layer, preventing damage to the fins during NiO deposition. As a result, E-mode operation can be achieved with 3x-larger tri-gate fins, compared to SiO2 alone, with ${V}_{\text {th}}$ of 0.7 V (at $1~\mu $ A/mm), negligible threshold voltage hysteresis ( $\Delta {V}_{\text {th}}$ of 0.05 V), together with small on-resistance ( ${R}_{\text {ON}}$ ) of 2.8 m $\Omega \cdot $ cm2 for a gate-to-drain separation ( ${L}_{\text {GD}}$ ) of $20~\mu $ m. In addition, the devices showed exceptional off-state characteristics, including breakdown voltage ( ${V}_{\text {br}}$ ) of 2.7 kV, and ON/OFF current ratio of $10^{{9}}$ , showcasing the potential of the p-NiO/SiO2 gate stack for high-performance E-mode power devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信