基于可转移代理模型和多目标优化的高效LDMOS设计

IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hongyu Tang;Chenggang Xu;Xiaoyun Huang;Yuxuan Zhu;Yunlong Li;Dawei Gao;Yitao Ma;Kai Xu
{"title":"基于可转移代理模型和多目标优化的高效LDMOS设计","authors":"Hongyu Tang;Chenggang Xu;Xiaoyun Huang;Yuxuan Zhu;Yunlong Li;Dawei Gao;Yitao Ma;Kai Xu","doi":"10.1109/LED.2025.3586707","DOIUrl":null,"url":null,"abstract":"Optimizing LDMOS performance requires balancing breakdown voltage (BV) and specific on-resistance (<inline-formula> <tex-math>$\\text {R}_{\\text {on},\\text {sp}}$ </tex-math></inline-formula>) under silicon-limit constraints. Conventional technology computer-aided design (TCAD)-based device design is time-consuming and inefficient for large parameter spaces. This work presents a machine learning (ML)-assisted framework that combines initial and fine-tuned deep neural network (DNN) surrogate models with multi-objective particle swarm optimization (MOPSO). The fine-tuned DNN adapts to a non-overlapping extended design space using only a small dataset, while the two surrogates are selectively applied during MOPSO to evaluate candidate designs, enabling significantly faster design evaluation compared to TCAD. SHAP analysis reveals consistent feature importance that aligns with the underlying device physics. The framework constructs diverse Pareto-optimal fronts, offering a scalable solution for automated LDMOS optimization under complex performance trade-offs.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 9","pages":"1593-1596"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient LDMOS Design via Transferable Surrogate Models and Multi-Objective Optimization\",\"authors\":\"Hongyu Tang;Chenggang Xu;Xiaoyun Huang;Yuxuan Zhu;Yunlong Li;Dawei Gao;Yitao Ma;Kai Xu\",\"doi\":\"10.1109/LED.2025.3586707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizing LDMOS performance requires balancing breakdown voltage (BV) and specific on-resistance (<inline-formula> <tex-math>$\\\\text {R}_{\\\\text {on},\\\\text {sp}}$ </tex-math></inline-formula>) under silicon-limit constraints. Conventional technology computer-aided design (TCAD)-based device design is time-consuming and inefficient for large parameter spaces. This work presents a machine learning (ML)-assisted framework that combines initial and fine-tuned deep neural network (DNN) surrogate models with multi-objective particle swarm optimization (MOPSO). The fine-tuned DNN adapts to a non-overlapping extended design space using only a small dataset, while the two surrogates are selectively applied during MOPSO to evaluate candidate designs, enabling significantly faster design evaluation compared to TCAD. SHAP analysis reveals consistent feature importance that aligns with the underlying device physics. The framework constructs diverse Pareto-optimal fronts, offering a scalable solution for automated LDMOS optimization under complex performance trade-offs.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 9\",\"pages\":\"1593-1596\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11072478/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11072478/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

优化LDMOS性能需要在硅限制条件下平衡击穿电压(BV)和特定导通电阻($\text {R}_{\text {on},\text {sp}}$)。传统的基于计算机辅助设计(TCAD)技术的设备设计对于大的参数空间是费时且低效的。这项工作提出了一个机器学习(ML)辅助框架,该框架将初始和微调深度神经网络(DNN)代理模型与多目标粒子群优化(MOPSO)相结合。微调后的DNN仅使用小数据集适应非重叠的扩展设计空间,而在MOPSO期间有选择地应用两个替代方案来评估候选设计,与TCAD相比,能够更快地进行设计评估。SHAP分析揭示了与底层设备物理一致的特性重要性。该框架构建了多种帕累托最优前沿,为复杂性能权衡下的自动LDMOS优化提供了可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient LDMOS Design via Transferable Surrogate Models and Multi-Objective Optimization
Optimizing LDMOS performance requires balancing breakdown voltage (BV) and specific on-resistance ( $\text {R}_{\text {on},\text {sp}}$ ) under silicon-limit constraints. Conventional technology computer-aided design (TCAD)-based device design is time-consuming and inefficient for large parameter spaces. This work presents a machine learning (ML)-assisted framework that combines initial and fine-tuned deep neural network (DNN) surrogate models with multi-objective particle swarm optimization (MOPSO). The fine-tuned DNN adapts to a non-overlapping extended design space using only a small dataset, while the two surrogates are selectively applied during MOPSO to evaluate candidate designs, enabling significantly faster design evaluation compared to TCAD. SHAP analysis reveals consistent feature importance that aligns with the underlying device physics. The framework constructs diverse Pareto-optimal fronts, offering a scalable solution for automated LDMOS optimization under complex performance trade-offs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信