John Niroula;Qingyun Xie;Elham Rafie Borujeny;Shisong Luo;Minsik Oh;Matthew A. Taylor;Yuji Zhao;Tomás Palacios
{"title":"高温AlGaN/GaN MISHEMT,带W/AlON栅堆,Imax>1 A/mm, 500°C","authors":"John Niroula;Qingyun Xie;Elham Rafie Borujeny;Shisong Luo;Minsik Oh;Matthew A. Taylor;Yuji Zhao;Tomás Palacios","doi":"10.1109/LED.2025.3590318","DOIUrl":null,"url":null,"abstract":"This work demonstrates a scaled (L<inline-formula> <tex-math>${}_{\\text {g}}=50$ </tex-math></inline-formula>nm, L<inline-formula> <tex-math>${}_{\\text {gs}}=270$ </tex-math></inline-formula> nm, L<inline-formula> <tex-math>${}_{\\text {gd}}=360$ </tex-math></inline-formula> nm) RF AlGaN/GaN MISHEMT with a record current density of 1.16 A/mm at 500°C and a corresponding Ion/Ioff of 9. The device was made using a plasma enhanced atomic layer deposited (PEALD) aluminum oxynitride (AlON) gate dielectric and passivation which was found to increase the 2D electron gas density by 33%. The devices were fabricated utilizing a sputtered tungsten refractory metal T-gate process and achieved a room temperature ft/fmax of 28.5/28.8 GHz, limited by RF loss through the conductive silicon substrate. Overall, the promising results highlight the potential of RF GaN HEMTs to operate at high temperatures to enable new applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 9","pages":"1477-1480"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Temperature AlGaN/GaN MISHEMT With W/AlON Gate Stack and Imax>1 A/mm at 500 ∘C\",\"authors\":\"John Niroula;Qingyun Xie;Elham Rafie Borujeny;Shisong Luo;Minsik Oh;Matthew A. Taylor;Yuji Zhao;Tomás Palacios\",\"doi\":\"10.1109/LED.2025.3590318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrates a scaled (L<inline-formula> <tex-math>${}_{\\\\text {g}}=50$ </tex-math></inline-formula>nm, L<inline-formula> <tex-math>${}_{\\\\text {gs}}=270$ </tex-math></inline-formula> nm, L<inline-formula> <tex-math>${}_{\\\\text {gd}}=360$ </tex-math></inline-formula> nm) RF AlGaN/GaN MISHEMT with a record current density of 1.16 A/mm at 500°C and a corresponding Ion/Ioff of 9. The device was made using a plasma enhanced atomic layer deposited (PEALD) aluminum oxynitride (AlON) gate dielectric and passivation which was found to increase the 2D electron gas density by 33%. The devices were fabricated utilizing a sputtered tungsten refractory metal T-gate process and achieved a room temperature ft/fmax of 28.5/28.8 GHz, limited by RF loss through the conductive silicon substrate. Overall, the promising results highlight the potential of RF GaN HEMTs to operate at high temperatures to enable new applications.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 9\",\"pages\":\"1477-1480\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11083610/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11083610/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
这项工作演示了一个缩放(L ${}_{\text {g}}=50$ nm, L ${}_{\text {gs}}=270$ nm, L ${}_{\text {gd}}=360$ nm)的RF AlGaN/GaN MISHEMT,在500°C时,记录电流密度为1.16 a /mm,相应的Ion/Ioff为9。该器件采用等离子体增强原子层沉积(PEALD)氧化氮化铝(AlON)栅极介质和钝化制成,发现其二维电子气体密度增加了33%。该器件采用溅射钨难熔金属t栅工艺制造,室温ft/fmax为28.5/28.8 GHz,受限于通过导电硅衬底的射频损耗。总的来说,这些有希望的结果突出了射频GaN hemt在高温下工作以实现新应用的潜力。
High Temperature AlGaN/GaN MISHEMT With W/AlON Gate Stack and Imax>1 A/mm at 500 ∘C
This work demonstrates a scaled (L${}_{\text {g}}=50$ nm, L${}_{\text {gs}}=270$ nm, L${}_{\text {gd}}=360$ nm) RF AlGaN/GaN MISHEMT with a record current density of 1.16 A/mm at 500°C and a corresponding Ion/Ioff of 9. The device was made using a plasma enhanced atomic layer deposited (PEALD) aluminum oxynitride (AlON) gate dielectric and passivation which was found to increase the 2D electron gas density by 33%. The devices were fabricated utilizing a sputtered tungsten refractory metal T-gate process and achieved a room temperature ft/fmax of 28.5/28.8 GHz, limited by RF loss through the conductive silicon substrate. Overall, the promising results highlight the potential of RF GaN HEMTs to operate at high temperatures to enable new applications.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.