基于微线圈阵列策略的MEMS电感器电磁与热性能分析

IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Cheng Yi;Hongyu Chen;Xiang Qiu;Xiaolong Chen;Haochen Wu;Xinxing Xia;Xuecheng Sun
{"title":"基于微线圈阵列策略的MEMS电感器电磁与热性能分析","authors":"Cheng Yi;Hongyu Chen;Xiang Qiu;Xiaolong Chen;Haochen Wu;Xinxing Xia;Xuecheng Sun","doi":"10.1109/LED.2025.3584108","DOIUrl":null,"url":null,"abstract":"The inherent limitations of current microelectromechanical systems (MEMS) thin-film inductors, characterized by low inductance values and limited current-carrying capacity, restrict their significant applications in thin-film electronics and other fields. In this study, we introduce a high current-carrying inductor design based on a novel microcoil array strategy, and we have fabricated glass-based inductors using microfabrication techniques. The results indicate that the array methodology substantially enhances the maximum current-carrying capacity of inductors. Specifically, the <inline-formula> <tex-math>$4\\times 3$ </tex-math></inline-formula> single-layer array (SLA) inductor developed in this study can sustain a direct current (DC) of up to 3.59 A, which is an order of magnitude (10 times) higher than that reported in other studies, and exhibits satisfactory magnetic performance. This inductor presents substantial potential for application in the realms of future thin-film electronics, flexible electronics, and consumer electronics.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 9","pages":"1605-1608"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Electromagnetic and Thermal Performance of MEMS Inductor Based on Microcoil Array Strategy\",\"authors\":\"Cheng Yi;Hongyu Chen;Xiang Qiu;Xiaolong Chen;Haochen Wu;Xinxing Xia;Xuecheng Sun\",\"doi\":\"10.1109/LED.2025.3584108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inherent limitations of current microelectromechanical systems (MEMS) thin-film inductors, characterized by low inductance values and limited current-carrying capacity, restrict their significant applications in thin-film electronics and other fields. In this study, we introduce a high current-carrying inductor design based on a novel microcoil array strategy, and we have fabricated glass-based inductors using microfabrication techniques. The results indicate that the array methodology substantially enhances the maximum current-carrying capacity of inductors. Specifically, the <inline-formula> <tex-math>$4\\\\times 3$ </tex-math></inline-formula> single-layer array (SLA) inductor developed in this study can sustain a direct current (DC) of up to 3.59 A, which is an order of magnitude (10 times) higher than that reported in other studies, and exhibits satisfactory magnetic performance. This inductor presents substantial potential for application in the realms of future thin-film electronics, flexible electronics, and consumer electronics.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 9\",\"pages\":\"1605-1608\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11058952/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11058952/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

当前微机电系统(MEMS)薄膜电感的固有局限性,即电感值低、载流能力有限,限制了其在薄膜电子等领域的广泛应用。在这项研究中,我们介绍了一种基于新型微线圈阵列策略的高载流电感器设计,并利用微加工技术制造了基于玻璃的电感器。结果表明,阵列方法大大提高了电感器的最大载流能力。具体而言,本研究开发的4\ × 3$单层阵列(SLA)电感可以维持高达3.59 a的直流(DC),比其他研究报道的高一个数量级(10倍),并且具有令人满意的磁性能。该电感器在未来的薄膜电子、柔性电子和消费电子领域具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Electromagnetic and Thermal Performance of MEMS Inductor Based on Microcoil Array Strategy
The inherent limitations of current microelectromechanical systems (MEMS) thin-film inductors, characterized by low inductance values and limited current-carrying capacity, restrict their significant applications in thin-film electronics and other fields. In this study, we introduce a high current-carrying inductor design based on a novel microcoil array strategy, and we have fabricated glass-based inductors using microfabrication techniques. The results indicate that the array methodology substantially enhances the maximum current-carrying capacity of inductors. Specifically, the $4\times 3$ single-layer array (SLA) inductor developed in this study can sustain a direct current (DC) of up to 3.59 A, which is an order of magnitude (10 times) higher than that reported in other studies, and exhibits satisfactory magnetic performance. This inductor presents substantial potential for application in the realms of future thin-film electronics, flexible electronics, and consumer electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信