w波段陀螺行波管宽频带厚BN夹层超材料窗

IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Di Guo;YaoYao Cao;Changsheng Shen;Yang Xie;Pan Pan;Xu Zeng;Jinjun Feng;Xiaohan Sun;Ningfeng Bai
{"title":"w波段陀螺行波管宽频带厚BN夹层超材料窗","authors":"Di Guo;YaoYao Cao;Changsheng Shen;Yang Xie;Pan Pan;Xu Zeng;Jinjun Feng;Xiaohan Sun;Ningfeng Bai","doi":"10.1109/LED.2025.3589629","DOIUrl":null,"url":null,"abstract":"This letter proposes a sandwich metamaterial window (SMW) for a W-band TE01 mode gyrotron travelling-wave tube (gyro-TWT), which is optimized using machine learning (ML) to achieve high transmissivity and low reflectivity in a wideband range. This SMW has three layers, BN-metal-BN, where the BN has a thickness of 1.05 mm. The metal layer is composed of hexagonal units allowing to improve the cold-test characterization of SMW. The ML optimization makes the SMW have a high simulation performance with S11 less than −20 dB and S21 higher than −0.14 dB within 12.15 GHz. Compared to conventional designs, the proposed SMW provides a thicker one to achieve comparable performance through a simplified fabrication process. Experimental validation confirms alignment with simulation results, demonstrating the feasibility of this approach. This work provides a scalable and cost-efficient methodology for high-frequency metasurface window design.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 9","pages":"1628-1631"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wideband Sandwich Metamaterial Window With Thick BN for W-Band gyro-TWT\",\"authors\":\"Di Guo;YaoYao Cao;Changsheng Shen;Yang Xie;Pan Pan;Xu Zeng;Jinjun Feng;Xiaohan Sun;Ningfeng Bai\",\"doi\":\"10.1109/LED.2025.3589629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes a sandwich metamaterial window (SMW) for a W-band TE01 mode gyrotron travelling-wave tube (gyro-TWT), which is optimized using machine learning (ML) to achieve high transmissivity and low reflectivity in a wideband range. This SMW has three layers, BN-metal-BN, where the BN has a thickness of 1.05 mm. The metal layer is composed of hexagonal units allowing to improve the cold-test characterization of SMW. The ML optimization makes the SMW have a high simulation performance with S11 less than −20 dB and S21 higher than −0.14 dB within 12.15 GHz. Compared to conventional designs, the proposed SMW provides a thicker one to achieve comparable performance through a simplified fabrication process. Experimental validation confirms alignment with simulation results, demonstrating the feasibility of this approach. This work provides a scalable and cost-efficient methodology for high-frequency metasurface window design.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 9\",\"pages\":\"1628-1631\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11082292/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11082292/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这封信提出了一种用于w波段TE01模式回旋管行波管(陀螺- twt)的三明治超材料窗口(SMW),该窗口使用机器学习(ML)进行优化,以在宽带范围内实现高透射率和低反射率。这种SMW有三层,BN-金属-BN,其中BN的厚度为1.05 mm。金属层由六边形单元组成,可以改善SMW的冷试验特性。优化后的SMW在12.15 GHz范围内,S11小于- 20 dB, S21大于- 0.14 dB,具有较高的仿真性能。与传统设计相比,所提出的SMW通过简化的制造工艺提供了更厚的SMW,以达到相当的性能。实验验证与仿真结果一致,证明了该方法的可行性。这项工作为高频超表面窗口设计提供了一种可扩展且经济高效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wideband Sandwich Metamaterial Window With Thick BN for W-Band gyro-TWT
This letter proposes a sandwich metamaterial window (SMW) for a W-band TE01 mode gyrotron travelling-wave tube (gyro-TWT), which is optimized using machine learning (ML) to achieve high transmissivity and low reflectivity in a wideband range. This SMW has three layers, BN-metal-BN, where the BN has a thickness of 1.05 mm. The metal layer is composed of hexagonal units allowing to improve the cold-test characterization of SMW. The ML optimization makes the SMW have a high simulation performance with S11 less than −20 dB and S21 higher than −0.14 dB within 12.15 GHz. Compared to conventional designs, the proposed SMW provides a thicker one to achieve comparable performance through a simplified fabrication process. Experimental validation confirms alignment with simulation results, demonstrating the feasibility of this approach. This work provides a scalable and cost-efficient methodology for high-frequency metasurface window design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信