通过顶部钻石集成增强多指GaN hemt的冷却

IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Daniel C. Shoemaker;Kelly Woo;Yiwen Song;Mohamadali Malakoutian;Bill Zivasatienraj;Puneet Srivastava;Isaac Wildeson;Srabanti Chowdhury;Sukwon Choi
{"title":"通过顶部钻石集成增强多指GaN hemt的冷却","authors":"Daniel C. Shoemaker;Kelly Woo;Yiwen Song;Mohamadali Malakoutian;Bill Zivasatienraj;Puneet Srivastava;Isaac Wildeson;Srabanti Chowdhury;Sukwon Choi","doi":"10.1109/LED.2025.3588202","DOIUrl":null,"url":null,"abstract":"Gallium nitride high electron mobility transistors (HEMTs) are key components for today’s 5G power amplifiers. However, device overheating requires commercial devices to operate under derated power levels. This work reports the cooling effectiveness of a top-side diamond heat spreader for a 16-finger GaN/SiC HEMT using gate resistance thermometry. A <inline-formula> <tex-math>$2~\\mu $ </tex-math></inline-formula>m thick diamond heat spreader was found to reduce the gate temperature rise by ~20% at 12 W/mm. Simulation results indicate that a diamond thickness greater than <inline-formula> <tex-math>$1.5~\\mu $ </tex-math></inline-formula>m is required to achieve a 10% reduction in the device thermal resistance (<inline-formula> <tex-math>${\\mathrm{R}}_{{\\text {Th}}}$ </tex-math></inline-formula>). To achieve a 10% reduction in the <inline-formula> <tex-math>${\\mathrm{R}}_{{\\text {Th}}}$ </tex-math></inline-formula>, the thermal conductivity of a <inline-formula> <tex-math>$2~\\mu $ </tex-math></inline-formula>m thick diamond layer needs to be greater than 450 W/m<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula> K and the SiN protection layer should be thinner than 75 nm. The incorporation of topside diamond combined with replacing the SiC substrate with diamond was shown to reduce the <inline-formula> <tex-math>${\\mathrm{R}}_{{\\text {Th}}}$ </tex-math></inline-formula> by 42.2% compared to a standard GaN/SiC HEMT in simulation.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 9","pages":"1597-1600"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Cooling of Multifinger GaN HEMTs via Topside Diamond Integration\",\"authors\":\"Daniel C. Shoemaker;Kelly Woo;Yiwen Song;Mohamadali Malakoutian;Bill Zivasatienraj;Puneet Srivastava;Isaac Wildeson;Srabanti Chowdhury;Sukwon Choi\",\"doi\":\"10.1109/LED.2025.3588202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gallium nitride high electron mobility transistors (HEMTs) are key components for today’s 5G power amplifiers. However, device overheating requires commercial devices to operate under derated power levels. This work reports the cooling effectiveness of a top-side diamond heat spreader for a 16-finger GaN/SiC HEMT using gate resistance thermometry. A <inline-formula> <tex-math>$2~\\\\mu $ </tex-math></inline-formula>m thick diamond heat spreader was found to reduce the gate temperature rise by ~20% at 12 W/mm. Simulation results indicate that a diamond thickness greater than <inline-formula> <tex-math>$1.5~\\\\mu $ </tex-math></inline-formula>m is required to achieve a 10% reduction in the device thermal resistance (<inline-formula> <tex-math>${\\\\mathrm{R}}_{{\\\\text {Th}}}$ </tex-math></inline-formula>). To achieve a 10% reduction in the <inline-formula> <tex-math>${\\\\mathrm{R}}_{{\\\\text {Th}}}$ </tex-math></inline-formula>, the thermal conductivity of a <inline-formula> <tex-math>$2~\\\\mu $ </tex-math></inline-formula>m thick diamond layer needs to be greater than 450 W/m<inline-formula> <tex-math>$\\\\cdot $ </tex-math></inline-formula> K and the SiN protection layer should be thinner than 75 nm. The incorporation of topside diamond combined with replacing the SiC substrate with diamond was shown to reduce the <inline-formula> <tex-math>${\\\\mathrm{R}}_{{\\\\text {Th}}}$ </tex-math></inline-formula> by 42.2% compared to a standard GaN/SiC HEMT in simulation.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 9\",\"pages\":\"1597-1600\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11078359/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11078359/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

氮化镓高电子迁移率晶体管(hemt)是当今5G功率放大器的关键组件。然而,设备过热要求商用设备在降额功率水平下运行。本研究报告了采用栅极电阻测温技术的16指GaN/SiC HEMT的顶部金刚石散热片的冷却效果。在12w /mm时,厚度为2~\mu $ m的金刚石散热片可使栅温升高降低~20%。仿真结果表明,要实现器件热阻(${\ mathm {R}}_{{\text {Th}}}$)降低10%,需要金刚石厚度大于$1.5~\mu $ m。为了使${\math {R}}_{{\text {Th}}}$降低10%,$2~\mu $ m厚的金刚石层的导热系数需要大于450 W/m $\cdot $ K,并且SiN保护层应薄于75 nm。在模拟中,与标准GaN/SiC HEMT相比,加入上部金刚石并用金刚石取代SiC衬底可使${\ mathm {R}}_{{\text {Th}}}$降低42.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Cooling of Multifinger GaN HEMTs via Topside Diamond Integration
Gallium nitride high electron mobility transistors (HEMTs) are key components for today’s 5G power amplifiers. However, device overheating requires commercial devices to operate under derated power levels. This work reports the cooling effectiveness of a top-side diamond heat spreader for a 16-finger GaN/SiC HEMT using gate resistance thermometry. A $2~\mu $ m thick diamond heat spreader was found to reduce the gate temperature rise by ~20% at 12 W/mm. Simulation results indicate that a diamond thickness greater than $1.5~\mu $ m is required to achieve a 10% reduction in the device thermal resistance ( ${\mathrm{R}}_{{\text {Th}}}$ ). To achieve a 10% reduction in the ${\mathrm{R}}_{{\text {Th}}}$ , the thermal conductivity of a $2~\mu $ m thick diamond layer needs to be greater than 450 W/m $\cdot $ K and the SiN protection layer should be thinner than 75 nm. The incorporation of topside diamond combined with replacing the SiC substrate with diamond was shown to reduce the ${\mathrm{R}}_{{\text {Th}}}$ by 42.2% compared to a standard GaN/SiC HEMT in simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信