Cailee M. Nelson , Rebecca Revilla , Nicole R. Friedman , Mengya Xia , Caitlin M. Hudac
{"title":"感觉被遗忘在午餐室:在青春期,被排斥的神经机制各不相同","authors":"Cailee M. Nelson , Rebecca Revilla , Nicole R. Friedman , Mengya Xia , Caitlin M. Hudac","doi":"10.1016/j.dcn.2025.101607","DOIUrl":null,"url":null,"abstract":"<div><div>Ostracism (i.e., being ignored/excluded) can cause intense emotional reactions that detrimentally impact mental and physical health. Adolescents may be particularly susceptible to these negative consequences due to brain maturation and changing social priorities. To better understand how neural mechanisms of ostracism vary across development (i.e., age, puberty), the current study employed a pictorial adaptation of Hudac’s (2019) Lunchroom electroencephalography (EEG) task in a sample of 84 adolescents (aged 10–14 years). Results indicated unique effects across event-related potential amplitudes, including a reversed pattern (greater sensitivity to inclusion) for the P1, the “classic” ostracism effect (greater sensitivity to exclusion) for the N2, and classic effects when modulated by puberty for the P3. Source estimation identified different neural networks that were likely driving sensitivity to exclusion (e.g., amygdala, SCG, and IFG) or inclusion (e.g., ACC, cingulate, fusiform, insula, SPL, STG). Further, sensitivity to exclusion increased over pubertal development for P3 amplitude but over age for amygdala and IFG. Sensitivity to inclusion decreased over age for P1 amplitude and inclusion sensitive regions. The current study emphasizes the utility of using paradigms that isolate neural processes associated with ostracism while controlling for participant involvement.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"75 ","pages":"Article 101607"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feeling left out in the Lunchroom: Neural mechanisms of ostracism vary across adolescence\",\"authors\":\"Cailee M. Nelson , Rebecca Revilla , Nicole R. Friedman , Mengya Xia , Caitlin M. Hudac\",\"doi\":\"10.1016/j.dcn.2025.101607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ostracism (i.e., being ignored/excluded) can cause intense emotional reactions that detrimentally impact mental and physical health. Adolescents may be particularly susceptible to these negative consequences due to brain maturation and changing social priorities. To better understand how neural mechanisms of ostracism vary across development (i.e., age, puberty), the current study employed a pictorial adaptation of Hudac’s (2019) Lunchroom electroencephalography (EEG) task in a sample of 84 adolescents (aged 10–14 years). Results indicated unique effects across event-related potential amplitudes, including a reversed pattern (greater sensitivity to inclusion) for the P1, the “classic” ostracism effect (greater sensitivity to exclusion) for the N2, and classic effects when modulated by puberty for the P3. Source estimation identified different neural networks that were likely driving sensitivity to exclusion (e.g., amygdala, SCG, and IFG) or inclusion (e.g., ACC, cingulate, fusiform, insula, SPL, STG). Further, sensitivity to exclusion increased over pubertal development for P3 amplitude but over age for amygdala and IFG. Sensitivity to inclusion decreased over age for P1 amplitude and inclusion sensitive regions. The current study emphasizes the utility of using paradigms that isolate neural processes associated with ostracism while controlling for participant involvement.</div></div>\",\"PeriodicalId\":49083,\"journal\":{\"name\":\"Developmental Cognitive Neuroscience\",\"volume\":\"75 \",\"pages\":\"Article 101607\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878929325001021\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929325001021","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Feeling left out in the Lunchroom: Neural mechanisms of ostracism vary across adolescence
Ostracism (i.e., being ignored/excluded) can cause intense emotional reactions that detrimentally impact mental and physical health. Adolescents may be particularly susceptible to these negative consequences due to brain maturation and changing social priorities. To better understand how neural mechanisms of ostracism vary across development (i.e., age, puberty), the current study employed a pictorial adaptation of Hudac’s (2019) Lunchroom electroencephalography (EEG) task in a sample of 84 adolescents (aged 10–14 years). Results indicated unique effects across event-related potential amplitudes, including a reversed pattern (greater sensitivity to inclusion) for the P1, the “classic” ostracism effect (greater sensitivity to exclusion) for the N2, and classic effects when modulated by puberty for the P3. Source estimation identified different neural networks that were likely driving sensitivity to exclusion (e.g., amygdala, SCG, and IFG) or inclusion (e.g., ACC, cingulate, fusiform, insula, SPL, STG). Further, sensitivity to exclusion increased over pubertal development for P3 amplitude but over age for amygdala and IFG. Sensitivity to inclusion decreased over age for P1 amplitude and inclusion sensitive regions. The current study emphasizes the utility of using paradigms that isolate neural processes associated with ostracism while controlling for participant involvement.
期刊介绍:
The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.