电动自行车在汽车城的经验:一个混合计算和内容分析的方法来理解可持续的微交通

IF 3.3 Q3 TRANSPORTATION
Greg Rybarczyk , Alyssa Sklar , Lorne Platt , Xiang Yan
{"title":"电动自行车在汽车城的经验:一个混合计算和内容分析的方法来理解可持续的微交通","authors":"Greg Rybarczyk ,&nbsp;Alyssa Sklar ,&nbsp;Lorne Platt ,&nbsp;Xiang Yan","doi":"10.1016/j.cstp.2025.101581","DOIUrl":null,"url":null,"abstract":"<div><div>As cities worldwide face mounting climate challenges, understanding e-bicycle experiences in car-dependent regions is crucial for sustainable transportation planning. This study examines factors that promote or hinder e-bicycle usage in metro-Detroit, Michigan through an innovative methodological approach combining Content Analysis, Text Mining (TF-IDF), and Biterm Topic Modeling (BTM). Our analysis of open-ended survey responses from current e-bicyclists revealed distinct linguistic and thematic patterns: positive experiences centered around terms like “e-bike” “ride,” and “save” corresponding to thematic categories of car substitution (24%), increased riding (21%), and commuting (21%), while negative experiences concentrated around “driver” and “battery,” reflecting driver hostility (36%) and bike performance issues (28%). The BTM uncovered how these elements interact within cohesive experiential themes, where enhanced mobility, health benefits, and sustainable transportation options reinforce positive experiences, while technical limitations interact with infrastructure deficiencies and social barriers to create compound adoption challenges. Our findings illuminate how e-bicycle adoption in car-centric regions requires addressing interconnected technical, social, and infrastructure factors simultaneously rather than as isolated variables, providing crucial insights for policymakers seeking to promote sustainable transportation transitions in North American cities.</div></div>","PeriodicalId":46989,"journal":{"name":"Case Studies on Transport Policy","volume":"22 ","pages":"Article 101581"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E-bicyclist experiences in motor city: A mixed computational and content analysis approach for understanding sustainable micromobility\",\"authors\":\"Greg Rybarczyk ,&nbsp;Alyssa Sklar ,&nbsp;Lorne Platt ,&nbsp;Xiang Yan\",\"doi\":\"10.1016/j.cstp.2025.101581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As cities worldwide face mounting climate challenges, understanding e-bicycle experiences in car-dependent regions is crucial for sustainable transportation planning. This study examines factors that promote or hinder e-bicycle usage in metro-Detroit, Michigan through an innovative methodological approach combining Content Analysis, Text Mining (TF-IDF), and Biterm Topic Modeling (BTM). Our analysis of open-ended survey responses from current e-bicyclists revealed distinct linguistic and thematic patterns: positive experiences centered around terms like “e-bike” “ride,” and “save” corresponding to thematic categories of car substitution (24%), increased riding (21%), and commuting (21%), while negative experiences concentrated around “driver” and “battery,” reflecting driver hostility (36%) and bike performance issues (28%). The BTM uncovered how these elements interact within cohesive experiential themes, where enhanced mobility, health benefits, and sustainable transportation options reinforce positive experiences, while technical limitations interact with infrastructure deficiencies and social barriers to create compound adoption challenges. Our findings illuminate how e-bicycle adoption in car-centric regions requires addressing interconnected technical, social, and infrastructure factors simultaneously rather than as isolated variables, providing crucial insights for policymakers seeking to promote sustainable transportation transitions in North American cities.</div></div>\",\"PeriodicalId\":46989,\"journal\":{\"name\":\"Case Studies on Transport Policy\",\"volume\":\"22 \",\"pages\":\"Article 101581\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies on Transport Policy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213624X25002184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies on Transport Policy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213624X25002184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

随着全球城市面临日益严峻的气候挑战,了解依赖汽车的地区的电动自行车体验对于可持续交通规划至关重要。本研究通过结合内容分析、文本挖掘(TF-IDF)和Biterm主题建模(BTM)的创新方法,考察了促进或阻碍密歇根州底特律地铁电动自行车使用的因素。我们对来自当前电动自行车骑行者的开放式调查反馈进行了分析,发现了不同的语言和主题模式:积极的体验集中在“电动自行车”、“骑行”和“节省”等术语上,对应于汽车替代的主题类别(24%),增加骑行(21%)和通勤(21%),而消极的体验集中在“司机”和“电池”上,反映了司机的敌意(36%)和自行车性能问题(28%)。BTM揭示了这些元素如何在有凝聚力的体验主题中相互作用,其中增强的机动性、健康效益和可持续的交通选择加强了积极的体验,而技术限制与基础设施不足和社会障碍相互作用,形成了复合的采用挑战。我们的研究结果表明,在以汽车为中心的地区,采用电动自行车需要同时解决相互关联的技术、社会和基础设施因素,而不是作为孤立的变量,这为寻求促进北美城市可持续交通转型的政策制定者提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-bicyclist experiences in motor city: A mixed computational and content analysis approach for understanding sustainable micromobility
As cities worldwide face mounting climate challenges, understanding e-bicycle experiences in car-dependent regions is crucial for sustainable transportation planning. This study examines factors that promote or hinder e-bicycle usage in metro-Detroit, Michigan through an innovative methodological approach combining Content Analysis, Text Mining (TF-IDF), and Biterm Topic Modeling (BTM). Our analysis of open-ended survey responses from current e-bicyclists revealed distinct linguistic and thematic patterns: positive experiences centered around terms like “e-bike” “ride,” and “save” corresponding to thematic categories of car substitution (24%), increased riding (21%), and commuting (21%), while negative experiences concentrated around “driver” and “battery,” reflecting driver hostility (36%) and bike performance issues (28%). The BTM uncovered how these elements interact within cohesive experiential themes, where enhanced mobility, health benefits, and sustainable transportation options reinforce positive experiences, while technical limitations interact with infrastructure deficiencies and social barriers to create compound adoption challenges. Our findings illuminate how e-bicycle adoption in car-centric regions requires addressing interconnected technical, social, and infrastructure factors simultaneously rather than as isolated variables, providing crucial insights for policymakers seeking to promote sustainable transportation transitions in North American cities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
12.00%
发文量
222
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信