解锁预测潜力:股票溢价预测的频域方法

IF 2.4 2区 经济学 Q2 BUSINESS, FINANCE
Gonçalo Faria , Fabio Verona
{"title":"解锁预测潜力:股票溢价预测的频域方法","authors":"Gonçalo Faria ,&nbsp;Fabio Verona","doi":"10.1016/j.jempfin.2025.101648","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the out-of-sample forecasting performance of 25 equity premium predictors over a sample period from 1973 to 2023. While conventional time-series methods reveal that only one predictor demonstrates significant out-of-sample predictive power, frequency-domain analysis uncovers additional predictive information hidden in the time series. Nearly half of the predictors exhibit statistically and economically meaningful predictive performance when decomposed into frequency components. The findings suggest that frequency-domain techniques can extract valuable insights that are often missed by traditional methods, enhancing the accuracy of equity premium forecasts.</div></div>","PeriodicalId":15704,"journal":{"name":"Journal of Empirical Finance","volume":"83 ","pages":"Article 101648"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking predictive potential: The frequency-domain approach to equity premium forecasting\",\"authors\":\"Gonçalo Faria ,&nbsp;Fabio Verona\",\"doi\":\"10.1016/j.jempfin.2025.101648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper explores the out-of-sample forecasting performance of 25 equity premium predictors over a sample period from 1973 to 2023. While conventional time-series methods reveal that only one predictor demonstrates significant out-of-sample predictive power, frequency-domain analysis uncovers additional predictive information hidden in the time series. Nearly half of the predictors exhibit statistically and economically meaningful predictive performance when decomposed into frequency components. The findings suggest that frequency-domain techniques can extract valuable insights that are often missed by traditional methods, enhancing the accuracy of equity premium forecasts.</div></div>\",\"PeriodicalId\":15704,\"journal\":{\"name\":\"Journal of Empirical Finance\",\"volume\":\"83 \",\"pages\":\"Article 101648\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Empirical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927539825000702\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Empirical Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927539825000702","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了25个股票溢价预测器在1973年至2023年的样本期内的样本外预测表现。虽然传统的时间序列方法表明只有一个预测器显示出显著的样本外预测能力,但频域分析揭示了隐藏在时间序列中的其他预测信息。当分解成频率分量时,近一半的预测器显示出统计上和经济上有意义的预测性能。研究结果表明,频域技术可以提取传统方法经常错过的有价值的见解,从而提高股票溢价预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking predictive potential: The frequency-domain approach to equity premium forecasting
This paper explores the out-of-sample forecasting performance of 25 equity premium predictors over a sample period from 1973 to 2023. While conventional time-series methods reveal that only one predictor demonstrates significant out-of-sample predictive power, frequency-domain analysis uncovers additional predictive information hidden in the time series. Nearly half of the predictors exhibit statistically and economically meaningful predictive performance when decomposed into frequency components. The findings suggest that frequency-domain techniques can extract valuable insights that are often missed by traditional methods, enhancing the accuracy of equity premium forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
3.80%
发文量
59
期刊介绍: The Journal of Empirical Finance is a financial economics journal whose aim is to publish high quality articles in empirical finance. Empirical finance is interpreted broadly to include any type of empirical work in financial economics, financial econometrics, and also theoretical work with clear empirical implications, even when there is no empirical analysis. The Journal welcomes articles in all fields of finance, such as asset pricing, corporate finance, financial econometrics, banking, international finance, microstructure, behavioural finance, etc. The Editorial Team is willing to take risks on innovative research, controversial papers, and unusual approaches. We are also particularly interested in work produced by young scholars. The composition of the editorial board reflects such goals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信