混合人工智能方法和生物阻抗光谱用于胰腺疾病分类

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Sergey Filist , Riad Taha Al-Kasasbeh , Tigran Gevorkyan , Osama M.Al- Habahbeh , Olga Vladimirovna Shatalova , Nikolay A. Korenevskiy , Maksim Ilyash , Evgeny Starkov , Ashraf Shaqadan , Ahmad Telfah
{"title":"混合人工智能方法和生物阻抗光谱用于胰腺疾病分类","authors":"Sergey Filist ,&nbsp;Riad Taha Al-Kasasbeh ,&nbsp;Tigran Gevorkyan ,&nbsp;Osama M.Al- Habahbeh ,&nbsp;Olga Vladimirovna Shatalova ,&nbsp;Nikolay A. Korenevskiy ,&nbsp;Maksim Ilyash ,&nbsp;Evgeny Starkov ,&nbsp;Ashraf Shaqadan ,&nbsp;Ahmad Telfah","doi":"10.1016/j.medengphy.2025.104425","DOIUrl":null,"url":null,"abstract":"<div><div>This research develops bioimpedance spectroscopy methods aimed at improving the differential diagnosis of pancreatic diseases. A novel approach for forming descriptors from bioimpedance data is introduced, which involves analyzing four amplitude-phase-frequency characteristics obtained from quasi-orthogonal leads. This method establishes informative feature spaces utilized by a hybrid classifier specifically designed to differentiate between pancreatitis and pancreatic cancer. The hybrid classifier comprises five macro layers, integrating probabilistic neural networks and fuzzy logical inference. Comprehensive experimental software studies and clinical tests validate the system's performance, demonstrating diagnostic sensitivity and specificity levels comparable to established techniques. The findings suggest that utilizing multifrequency bioimpedance measurements in neural network classifiers enhances the accuracy of clinical decision-making, potentially leading to better diagnostic outcomes for pancreatic diseases.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"145 ","pages":"Article 104425"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid artificial intelligence approaches and bioimpedance spectroscopy for classifying pancreatic disease\",\"authors\":\"Sergey Filist ,&nbsp;Riad Taha Al-Kasasbeh ,&nbsp;Tigran Gevorkyan ,&nbsp;Osama M.Al- Habahbeh ,&nbsp;Olga Vladimirovna Shatalova ,&nbsp;Nikolay A. Korenevskiy ,&nbsp;Maksim Ilyash ,&nbsp;Evgeny Starkov ,&nbsp;Ashraf Shaqadan ,&nbsp;Ahmad Telfah\",\"doi\":\"10.1016/j.medengphy.2025.104425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research develops bioimpedance spectroscopy methods aimed at improving the differential diagnosis of pancreatic diseases. A novel approach for forming descriptors from bioimpedance data is introduced, which involves analyzing four amplitude-phase-frequency characteristics obtained from quasi-orthogonal leads. This method establishes informative feature spaces utilized by a hybrid classifier specifically designed to differentiate between pancreatitis and pancreatic cancer. The hybrid classifier comprises five macro layers, integrating probabilistic neural networks and fuzzy logical inference. Comprehensive experimental software studies and clinical tests validate the system's performance, demonstrating diagnostic sensitivity and specificity levels comparable to established techniques. The findings suggest that utilizing multifrequency bioimpedance measurements in neural network classifiers enhances the accuracy of clinical decision-making, potentially leading to better diagnostic outcomes for pancreatic diseases.</div></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":\"145 \",\"pages\":\"Article 104425\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453325001444\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325001444","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究发展生物阻抗谱方法,旨在改善胰腺疾病的鉴别诊断。介绍了一种利用生物阻抗数据形成描述子的新方法,该方法涉及分析从准正交引线获得的四个幅相频率特性。这种方法建立信息特征空间利用的混合分类器专门设计来区分胰腺炎和胰腺癌。混合分类器包括五个宏观层,融合了概率神经网络和模糊逻辑推理。全面的实验软件研究和临床测试验证了该系统的性能,证明了与现有技术相当的诊断敏感性和特异性水平。研究结果表明,在神经网络分类器中使用多频生物阻抗测量可以提高临床决策的准确性,从而可能导致更好的胰腺疾病诊断结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid artificial intelligence approaches and bioimpedance spectroscopy for classifying pancreatic disease
This research develops bioimpedance spectroscopy methods aimed at improving the differential diagnosis of pancreatic diseases. A novel approach for forming descriptors from bioimpedance data is introduced, which involves analyzing four amplitude-phase-frequency characteristics obtained from quasi-orthogonal leads. This method establishes informative feature spaces utilized by a hybrid classifier specifically designed to differentiate between pancreatitis and pancreatic cancer. The hybrid classifier comprises five macro layers, integrating probabilistic neural networks and fuzzy logical inference. Comprehensive experimental software studies and clinical tests validate the system's performance, demonstrating diagnostic sensitivity and specificity levels comparable to established techniques. The findings suggest that utilizing multifrequency bioimpedance measurements in neural network classifiers enhances the accuracy of clinical decision-making, potentially leading to better diagnostic outcomes for pancreatic diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信