一种55纳米SRAM芯片每125纳秒扫描误差用于事件智能软误差测量

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yuibi Gomi;Akira Sato;Waleed Madany;Kenichi Okada;Satoshi Adachi;Masatoshi Itoh;Masanori Hashimoto
{"title":"一种55纳米SRAM芯片每125纳秒扫描误差用于事件智能软误差测量","authors":"Yuibi Gomi;Akira Sato;Waleed Madany;Kenichi Okada;Satoshi Adachi;Masatoshi Itoh;Masanori Hashimoto","doi":"10.1109/LSSC.2025.3589611","DOIUrl":null,"url":null,"abstract":"We developed a 55 nm CMOS static random access memory (SRAM) chip that scans all data every 125 ns and outputs timestamped soft error data via an SPI interface through a FIFO. The proposed system, consisting of the developed chip and particle detectors, enables event-wise soft error measurement and precise identification of single bit upset and multiple-cell upsets (MCUs), thus resolving misclassifications such as Pseudo- and Distant MCUs that conventional methods cannot distinguish. An 80-MeV proton irradiation experiment at RARiS, Tohoku University verified the system operation. Timestamps between the SRAM chip and the particle detectors were successfully synchronized, accounting for PLL disturbances caused by radiation. Event building was achieved by determining a reset offset with sub-ns resolution, and spatial synchronization was maintained within several tens of micrometers.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"245-248"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 55-nm SRAM Chip Scanning Errors Every 125 ns for Event-Wise Soft Error Measurement\",\"authors\":\"Yuibi Gomi;Akira Sato;Waleed Madany;Kenichi Okada;Satoshi Adachi;Masatoshi Itoh;Masanori Hashimoto\",\"doi\":\"10.1109/LSSC.2025.3589611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a 55 nm CMOS static random access memory (SRAM) chip that scans all data every 125 ns and outputs timestamped soft error data via an SPI interface through a FIFO. The proposed system, consisting of the developed chip and particle detectors, enables event-wise soft error measurement and precise identification of single bit upset and multiple-cell upsets (MCUs), thus resolving misclassifications such as Pseudo- and Distant MCUs that conventional methods cannot distinguish. An 80-MeV proton irradiation experiment at RARiS, Tohoku University verified the system operation. Timestamps between the SRAM chip and the particle detectors were successfully synchronized, accounting for PLL disturbances caused by radiation. Event building was achieved by determining a reset offset with sub-ns resolution, and spatial synchronization was maintained within several tens of micrometers.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"8 \",\"pages\":\"245-248\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11082300/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11082300/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种55纳米CMOS静态随机存取存储器(SRAM)芯片,每125 ns扫描所有数据,并通过FIFO通过SPI接口输出带有时间戳的软错误数据。所提出的系统由开发的芯片和粒子探测器组成,可以实现事件软误差测量和精确识别单比特扰动和多单元扰动(mcu),从而解决传统方法无法区分的伪和远端mcu等错误分类。在日本东北大学RARiS进行的80 mev质子辐照实验验证了该系统的运行。考虑到辐射引起的锁相环干扰,SRAM芯片和粒子探测器之间的时间戳成功同步。事件构建是通过确定一个亚ns分辨率的重置偏移量来实现的,空间同步保持在几十微米以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 55-nm SRAM Chip Scanning Errors Every 125 ns for Event-Wise Soft Error Measurement
We developed a 55 nm CMOS static random access memory (SRAM) chip that scans all data every 125 ns and outputs timestamped soft error data via an SPI interface through a FIFO. The proposed system, consisting of the developed chip and particle detectors, enables event-wise soft error measurement and precise identification of single bit upset and multiple-cell upsets (MCUs), thus resolving misclassifications such as Pseudo- and Distant MCUs that conventional methods cannot distinguish. An 80-MeV proton irradiation experiment at RARiS, Tohoku University verified the system operation. Timestamps between the SRAM chip and the particle detectors were successfully synchronized, accounting for PLL disturbances caused by radiation. Event building was achieved by determining a reset offset with sub-ns resolution, and spatial synchronization was maintained within several tens of micrometers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信