N2O等离子体处理的2.4 kV β-Ga2O3 sbd性能图为1.22 GW/cm2

IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yongjie He;Maolin Pan;Jining Yang;Wenjun Liu;Hao Zhu
{"title":"N2O等离子体处理的2.4 kV β-Ga2O3 sbd性能图为1.22 GW/cm2","authors":"Yongjie He;Maolin Pan;Jining Yang;Wenjun Liu;Hao Zhu","doi":"10.1109/LED.2025.3585723","DOIUrl":null,"url":null,"abstract":"This work reports the effect of N2O plasma treatment at different temperatures on the performance of <inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-Ga2O3 Schottky barrier diodes (SBDs). The results show that after <inline-formula> <tex-math>$300~^{\\circ }$ </tex-math></inline-formula>C N2O plasma treatment, the device leakage current decreased from <inline-formula> <tex-math>$4\\times 10^{-{9}}$ </tex-math></inline-formula> to <inline-formula> <tex-math>$4\\times 10^{-{10}}$ </tex-math></inline-formula> A/cm2, and the on-off ratio increased from <inline-formula> <tex-math>$6\\times 10^{{10}}$ </tex-math></inline-formula> to <inline-formula> <tex-math>$5\\times 10^{{11}}$ </tex-math></inline-formula>. Due to the passivation of surface states and oxygen vacancies by nitrogen and oxygen ions, the carrier concentration decreased from <inline-formula> <tex-math>${2}.{20}\\times {10} ^{{16}}$ </tex-math></inline-formula> to <inline-formula> <tex-math>${1}.{61}\\times {10} ^{{16}}$ </tex-math></inline-formula>cm<inline-formula> <tex-math>${}^{-{3}}$ </tex-math></inline-formula>. The improvement is attributed to the formation of a significant amount of Ga-N bonds on the sample surface, which results in the generation of a high-resistance N-doped <inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-Ga2O3 layer. This further improves the device breakdown voltage (V<inline-formula> <tex-math>${}_{\\text {br}}\\text {)}$ </tex-math></inline-formula> from 664 V to 2,437 V with a power figure of merit (PFOM) of 1.22 GW/cm2. Our breakdown electric field (E<inline-formula> <tex-math>${}_{\\text {br}}\\text {)}$ </tex-math></inline-formula> is the highest among reported vertical <inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-Ga2O3 SBDs without termination structure, and Vbr is the highest of devices with the same epitaxy thickness.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 9","pages":"1577-1580"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2.4 kV β-Ga2O3 SBDs With 1.22 GW/cm2 Figure of Merit by N2O Plasma Treatment\",\"authors\":\"Yongjie He;Maolin Pan;Jining Yang;Wenjun Liu;Hao Zhu\",\"doi\":\"10.1109/LED.2025.3585723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reports the effect of N2O plasma treatment at different temperatures on the performance of <inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula>-Ga2O3 Schottky barrier diodes (SBDs). The results show that after <inline-formula> <tex-math>$300~^{\\\\circ }$ </tex-math></inline-formula>C N2O plasma treatment, the device leakage current decreased from <inline-formula> <tex-math>$4\\\\times 10^{-{9}}$ </tex-math></inline-formula> to <inline-formula> <tex-math>$4\\\\times 10^{-{10}}$ </tex-math></inline-formula> A/cm2, and the on-off ratio increased from <inline-formula> <tex-math>$6\\\\times 10^{{10}}$ </tex-math></inline-formula> to <inline-formula> <tex-math>$5\\\\times 10^{{11}}$ </tex-math></inline-formula>. Due to the passivation of surface states and oxygen vacancies by nitrogen and oxygen ions, the carrier concentration decreased from <inline-formula> <tex-math>${2}.{20}\\\\times {10} ^{{16}}$ </tex-math></inline-formula> to <inline-formula> <tex-math>${1}.{61}\\\\times {10} ^{{16}}$ </tex-math></inline-formula>cm<inline-formula> <tex-math>${}^{-{3}}$ </tex-math></inline-formula>. The improvement is attributed to the formation of a significant amount of Ga-N bonds on the sample surface, which results in the generation of a high-resistance N-doped <inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula>-Ga2O3 layer. This further improves the device breakdown voltage (V<inline-formula> <tex-math>${}_{\\\\text {br}}\\\\text {)}$ </tex-math></inline-formula> from 664 V to 2,437 V with a power figure of merit (PFOM) of 1.22 GW/cm2. Our breakdown electric field (E<inline-formula> <tex-math>${}_{\\\\text {br}}\\\\text {)}$ </tex-math></inline-formula> is the highest among reported vertical <inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula>-Ga2O3 SBDs without termination structure, and Vbr is the highest of devices with the same epitaxy thickness.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 9\",\"pages\":\"1577-1580\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11071282/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11071282/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了不同温度下N2O等离子体处理对$\beta $ -Ga2O3肖特基势垒二极管(sbd)性能的影响。结果表明,经过$300~^{\circ}$ C N2O等离子体处理后,器件漏电流由$4\ × 10^{-{9}}$降低到$4\ × 10^{-{10}}$ /cm2,通断比由$6\ × 10^{{10}}$提高到$5\ × 10^{{11}}$。由于氮离子和氧离子钝化了表面态和氧空位,载流子浓度从${2}开始下降。{20}\乘以{10}^{{16}}$到${1}。{61}\times {10} ^{{16}}$ cm ${}^{-{3}}$。这种改进是由于在样品表面形成了大量的Ga-N键,从而产生了高电阻n掺杂的$\beta $ -Ga2O3层。这进一步提高了器件击穿电压(V ${}_{\text {br}}\text{)}$从664 V到2,437 V,功率优值(PFOM)为1.22 GW/cm2。我们的击穿电场(E ${}_{\text {br}}\text{)}$是目前报道的无端接结构的垂直$\beta $ -Ga2O3 sdd器件中最高的,Vbr是相同外延厚度器件中最高的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2.4 kV β-Ga2O3 SBDs With 1.22 GW/cm2 Figure of Merit by N2O Plasma Treatment
This work reports the effect of N2O plasma treatment at different temperatures on the performance of $\beta $ -Ga2O3 Schottky barrier diodes (SBDs). The results show that after $300~^{\circ }$ C N2O plasma treatment, the device leakage current decreased from $4\times 10^{-{9}}$ to $4\times 10^{-{10}}$ A/cm2, and the on-off ratio increased from $6\times 10^{{10}}$ to $5\times 10^{{11}}$ . Due to the passivation of surface states and oxygen vacancies by nitrogen and oxygen ions, the carrier concentration decreased from ${2}.{20}\times {10} ^{{16}}$ to ${1}.{61}\times {10} ^{{16}}$ cm ${}^{-{3}}$ . The improvement is attributed to the formation of a significant amount of Ga-N bonds on the sample surface, which results in the generation of a high-resistance N-doped $\beta $ -Ga2O3 layer. This further improves the device breakdown voltage (V ${}_{\text {br}}\text {)}$ from 664 V to 2,437 V with a power figure of merit (PFOM) of 1.22 GW/cm2. Our breakdown electric field (E ${}_{\text {br}}\text {)}$ is the highest among reported vertical $\beta $ -Ga2O3 SBDs without termination structure, and Vbr is the highest of devices with the same epitaxy thickness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信