原子层沉积氧化钴和氧化铁堆的电学和磁性

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kristjan Kalam, Raul Rammula, Jekaterina Kozlova, Tanel Käämbre, Peeter Ritslaid, Aarne Kasikov, Aile Tamm, Joosep Link, Raivo Stern, Guillermo Vinuesa, Salvador Dueñas, Helena Castán and Kaupo Kukli
{"title":"原子层沉积氧化钴和氧化铁堆的电学和磁性","authors":"Kristjan Kalam, Raul Rammula, Jekaterina Kozlova, Tanel Käämbre, Peeter Ritslaid, Aarne Kasikov, Aile Tamm, Joosep Link, Raivo Stern, Guillermo Vinuesa, Salvador Dueñas, Helena Castán and Kaupo Kukli","doi":"10.1039/D5TC01923K","DOIUrl":null,"url":null,"abstract":"<p >Cobalt and iron oxides, due to their tunable structural and magnetic properties, are widely studied for electronic and spintronic applications. However, achieving high coercivity and saturation magnetization in ultrathin films remains a challenge. In this work, we report on the atomic layer deposition (ALD) of nanolaminates and mixed cobalt–iron oxide films on silicon and TiN substrates at 300–450 °C. Using supercycle and multistep ALD methods with ferrocene and cobalt acetylacetonate precursors, we synthesized Co<small><sub>3</sub></small>O<small><sub>4</sub></small>–Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> bilayers and ternary ferrites (Co<small><sub>2</sub></small>FeO<small><sub>4</sub></small> and CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>). The structural, morphological, electrical, and magnetic properties were characterized. We observed that thin films (∼7–12 nm) exhibit markedly enhanced breakdown fields and exceptional magnetic coercivity (up to 25 kOe) and saturation magnetization (up to 1000 emu cm<small><sup>−3</sup></small>), especially after annealing. These results demonstrate a viable route to engineer ferrite-based thin films with superior magnetic and dielectric performance at nanoscale thicknesses.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 34","pages":" 17551-17565"},"PeriodicalIF":5.1000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc01923k?page=search","citationCount":"0","resultStr":"{\"title\":\"Electrical and magnetic properties of atomic layer deposited cobalt oxide and iron oxide stacks\",\"authors\":\"Kristjan Kalam, Raul Rammula, Jekaterina Kozlova, Tanel Käämbre, Peeter Ritslaid, Aarne Kasikov, Aile Tamm, Joosep Link, Raivo Stern, Guillermo Vinuesa, Salvador Dueñas, Helena Castán and Kaupo Kukli\",\"doi\":\"10.1039/D5TC01923K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cobalt and iron oxides, due to their tunable structural and magnetic properties, are widely studied for electronic and spintronic applications. However, achieving high coercivity and saturation magnetization in ultrathin films remains a challenge. In this work, we report on the atomic layer deposition (ALD) of nanolaminates and mixed cobalt–iron oxide films on silicon and TiN substrates at 300–450 °C. Using supercycle and multistep ALD methods with ferrocene and cobalt acetylacetonate precursors, we synthesized Co<small><sub>3</sub></small>O<small><sub>4</sub></small>–Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> bilayers and ternary ferrites (Co<small><sub>2</sub></small>FeO<small><sub>4</sub></small> and CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>). The structural, morphological, electrical, and magnetic properties were characterized. We observed that thin films (∼7–12 nm) exhibit markedly enhanced breakdown fields and exceptional magnetic coercivity (up to 25 kOe) and saturation magnetization (up to 1000 emu cm<small><sup>−3</sup></small>), especially after annealing. These results demonstrate a viable route to engineer ferrite-based thin films with superior magnetic and dielectric performance at nanoscale thicknesses.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 34\",\"pages\":\" 17551-17565\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc01923k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01923k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01923k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钴和铁的氧化物由于其可调的结构和磁性,在电子和自旋电子应用方面得到了广泛的研究。然而,在超薄膜中实现高矫顽力和饱和磁化仍然是一个挑战。在这项工作中,我们报道了在300-450°C下在硅和TiN衬底上原子层沉积纳米层和混合钴氧化铁薄膜(ALD)。以二茂铁和乙酰丙酮钴为前驱体,采用超循环和多步ALD法合成了Co3O4-Fe2O3双层和Co2FeO4和CoFe2O4三元铁氧体。表征了材料的结构、形态、电学和磁性能。我们观察到薄膜(~ 7-12 nm)表现出明显增强的击穿场和特殊的磁矫顽力(高达25 kOe)和饱和磁化(高达1000 emu cm−3),特别是在退火之后。这些结果表明了一种可行的方法来设计具有优异磁性和介电性能的纳米级铁氧体基薄膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrical and magnetic properties of atomic layer deposited cobalt oxide and iron oxide stacks

Electrical and magnetic properties of atomic layer deposited cobalt oxide and iron oxide stacks

Cobalt and iron oxides, due to their tunable structural and magnetic properties, are widely studied for electronic and spintronic applications. However, achieving high coercivity and saturation magnetization in ultrathin films remains a challenge. In this work, we report on the atomic layer deposition (ALD) of nanolaminates and mixed cobalt–iron oxide films on silicon and TiN substrates at 300–450 °C. Using supercycle and multistep ALD methods with ferrocene and cobalt acetylacetonate precursors, we synthesized Co3O4–Fe2O3 bilayers and ternary ferrites (Co2FeO4 and CoFe2O4). The structural, morphological, electrical, and magnetic properties were characterized. We observed that thin films (∼7–12 nm) exhibit markedly enhanced breakdown fields and exceptional magnetic coercivity (up to 25 kOe) and saturation magnetization (up to 1000 emu cm−3), especially after annealing. These results demonstrate a viable route to engineer ferrite-based thin films with superior magnetic and dielectric performance at nanoscale thicknesses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信