图关注网络解码导电网络机制,加速聚合物纳米复合材料的设计

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Tang Sui, Shaolong Liu, Bihui Cong, Xiaoke Xu, Dongjing Shan, Giuseppe Milano, Ying Zhao, Shuang Xu, Jiashun Mao
{"title":"图关注网络解码导电网络机制,加速聚合物纳米复合材料的设计","authors":"Tang Sui, Shaolong Liu, Bihui Cong, Xiaoke Xu, Dongjing Shan, Giuseppe Milano, Ying Zhao, Shuang Xu, Jiashun Mao","doi":"10.1038/s41524-025-01773-5","DOIUrl":null,"url":null,"abstract":"<p>Conductive polymer nanocomposites have emerged as essential materials for wearable devices. In this study, we propose a novel approach that combines graph attention networks (GAT) with an improved global pooling strategy and incremental learning. We train the GAT model on homopolymer/carbon nanotube (CNT) nanocomposite data simulated by hybrid particle-field molecular dynamics (hPF-MD) method within the CNT concentration range of 1–8%. We further analyze the conductive network structure by integrating the resistor network approach with the GAT’s attention scores, revealing optimal connectivity at a 7% concentration. The comparative analysis of trained data and the reconstructed network, based on the attention scores, underscores the GAT model’s ability in learning network structural representations. This work not only validates the efficacy of the GAT model in property prediction and interpretable network structure analysis of polymer nanocomposites but also lays a cornerstone for the reverse engineering of polymer composites.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"22 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph attention networks decode conductive network mechanism and accelerate design of polymer nanocomposites\",\"authors\":\"Tang Sui, Shaolong Liu, Bihui Cong, Xiaoke Xu, Dongjing Shan, Giuseppe Milano, Ying Zhao, Shuang Xu, Jiashun Mao\",\"doi\":\"10.1038/s41524-025-01773-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conductive polymer nanocomposites have emerged as essential materials for wearable devices. In this study, we propose a novel approach that combines graph attention networks (GAT) with an improved global pooling strategy and incremental learning. We train the GAT model on homopolymer/carbon nanotube (CNT) nanocomposite data simulated by hybrid particle-field molecular dynamics (hPF-MD) method within the CNT concentration range of 1–8%. We further analyze the conductive network structure by integrating the resistor network approach with the GAT’s attention scores, revealing optimal connectivity at a 7% concentration. The comparative analysis of trained data and the reconstructed network, based on the attention scores, underscores the GAT model’s ability in learning network structural representations. This work not only validates the efficacy of the GAT model in property prediction and interpretable network structure analysis of polymer nanocomposites but also lays a cornerstone for the reverse engineering of polymer composites.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01773-5\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01773-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

导电聚合物纳米复合材料已成为可穿戴设备的重要材料。在这项研究中,我们提出了一种将图注意网络(GAT)与改进的全局池化策略和增量学习相结合的新方法。我们利用混合粒子场分子动力学(hPF-MD)方法模拟的均聚物/碳纳米管(CNT)纳米复合材料数据,在1-8%的CNT浓度范围内训练GAT模型。通过将电阻网络方法与GAT的注意力得分相结合,我们进一步分析了导电网络结构,揭示了7%浓度下的最佳连通性。通过对训练数据和重构网络的对比分析,可以看出GAT模型在学习网络结构表征方面的能力。该研究不仅验证了GAT模型在聚合物纳米复合材料性能预测和可解释网络结构分析方面的有效性,而且为聚合物纳米复合材料的逆向工程奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Graph attention networks decode conductive network mechanism and accelerate design of polymer nanocomposites

Graph attention networks decode conductive network mechanism and accelerate design of polymer nanocomposites

Conductive polymer nanocomposites have emerged as essential materials for wearable devices. In this study, we propose a novel approach that combines graph attention networks (GAT) with an improved global pooling strategy and incremental learning. We train the GAT model on homopolymer/carbon nanotube (CNT) nanocomposite data simulated by hybrid particle-field molecular dynamics (hPF-MD) method within the CNT concentration range of 1–8%. We further analyze the conductive network structure by integrating the resistor network approach with the GAT’s attention scores, revealing optimal connectivity at a 7% concentration. The comparative analysis of trained data and the reconstructed network, based on the attention scores, underscores the GAT model’s ability in learning network structural representations. This work not only validates the efficacy of the GAT model in property prediction and interpretable network structure analysis of polymer nanocomposites but also lays a cornerstone for the reverse engineering of polymer composites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信