{"title":"具有漏极应力的碳化硅MOSFET的动态阈值电压漂移","authors":"Huapping Jiang;Yao Li;Xinxin Li;Mengya Qiu;Nianlei Xiao;Lei Tang;Xiaohan Zhong;Ruijin Liao","doi":"10.1109/TED.2025.3592639","DOIUrl":null,"url":null,"abstract":"Silicon carbide (SiC) MOSFETs are widely favored for their excellent performance. However, reliability concerns have hindered their rapid development, with threshold voltage drift being one of the key concerns. Although threshold voltage drift under static and dynamic gate stress has been widely investigated, limited attention has been paid to the threshold voltage drift induced by drain stress. In this work, a dedicated test platform for SiC MOSFETs was developed, enabling independent and decoupled application of gate and drain stresses. Moreover, the drain stress can be further decomposed into voltage and current components for more detailed analysis. In addition, TCAD simulations were used to investigate the mechanisms underlying the different threshold voltage drifts induced by various stress modes. It was found that drain stress has a noticeable effect on threshold voltage drift, which cannot be neglected. Moreover, there is a coupling effect between drain and gate stresses. These findings aim to provide better management and coping strategies for threshold voltage drift in power electronic device applications.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 9","pages":"4802-4809"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Threshold Voltage Drift of Silicon Carbide MOSFET With Drain Stress\",\"authors\":\"Huapping Jiang;Yao Li;Xinxin Li;Mengya Qiu;Nianlei Xiao;Lei Tang;Xiaohan Zhong;Ruijin Liao\",\"doi\":\"10.1109/TED.2025.3592639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon carbide (SiC) MOSFETs are widely favored for their excellent performance. However, reliability concerns have hindered their rapid development, with threshold voltage drift being one of the key concerns. Although threshold voltage drift under static and dynamic gate stress has been widely investigated, limited attention has been paid to the threshold voltage drift induced by drain stress. In this work, a dedicated test platform for SiC MOSFETs was developed, enabling independent and decoupled application of gate and drain stresses. Moreover, the drain stress can be further decomposed into voltage and current components for more detailed analysis. In addition, TCAD simulations were used to investigate the mechanisms underlying the different threshold voltage drifts induced by various stress modes. It was found that drain stress has a noticeable effect on threshold voltage drift, which cannot be neglected. Moreover, there is a coupling effect between drain and gate stresses. These findings aim to provide better management and coping strategies for threshold voltage drift in power electronic device applications.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 9\",\"pages\":\"4802-4809\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11105529/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11105529/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dynamic Threshold Voltage Drift of Silicon Carbide MOSFET With Drain Stress
Silicon carbide (SiC) MOSFETs are widely favored for their excellent performance. However, reliability concerns have hindered their rapid development, with threshold voltage drift being one of the key concerns. Although threshold voltage drift under static and dynamic gate stress has been widely investigated, limited attention has been paid to the threshold voltage drift induced by drain stress. In this work, a dedicated test platform for SiC MOSFETs was developed, enabling independent and decoupled application of gate and drain stresses. Moreover, the drain stress can be further decomposed into voltage and current components for more detailed analysis. In addition, TCAD simulations were used to investigate the mechanisms underlying the different threshold voltage drifts induced by various stress modes. It was found that drain stress has a noticeable effect on threshold voltage drift, which cannot be neglected. Moreover, there is a coupling effect between drain and gate stresses. These findings aim to provide better management and coping strategies for threshold voltage drift in power electronic device applications.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.