基于catboost的z干涉建模精确预测缩放三维NAND闪存阈值电压分布

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hyeon Seo Yun;Seul Ki Hong;Seung Jae Baik;Jaeduk Lee;Jong Kyung Park
{"title":"基于catboost的z干涉建模精确预测缩放三维NAND闪存阈值电压分布","authors":"Hyeon Seo Yun;Seul Ki Hong;Seung Jae Baik;Jaeduk Lee;Jong Kyung Park","doi":"10.1109/TED.2025.3589196","DOIUrl":null,"url":null,"abstract":"This article presents a machine learning approach using CatBoost regression to model Z-interference (Z-INF) effects in scaled 3-D <sc>nand</small> flash memory. As vertical integration of word-lines (WLs) increases bit density, pitch scaling intensifies cell-to-cell interference, widening threshold voltage (<inline-formula> <tex-math>${V}_{\\text {th}}\\text {)}$ </tex-math></inline-formula> distributions, and reducing sensing margins. Conventional TCAD simulations and exponential function fitting can handle two-parameter relationships but cannot adequately model multiple variables affecting Z-INF. Our proposed three-parameter model incorporates both initial and final states of attack cells with victim cell characteristics, while maintaining extensibility for additional factors at smaller cell dimensions. Experimental results confirm that the model accurately predicts <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> distribution changes across various WL geometries with improved computational efficiency. Analysis shows Z-INF increases 4–5 times when oxide/nitride (ON) pitch decreases from 50 to 40 nm, with critical degradation below 45 nm. The model successfully accounts for process variations and identifies scaling thresholds, providing insights for reliability improvement and error correction in advanced 3-D <sc>nand</small> architectures.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 9","pages":"4851-4855"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CatBoost-Based Z-Interference Modeling for Accurate Prediction of Threshold Voltage Distribution in Scaled 3-D NAND Flash\",\"authors\":\"Hyeon Seo Yun;Seul Ki Hong;Seung Jae Baik;Jaeduk Lee;Jong Kyung Park\",\"doi\":\"10.1109/TED.2025.3589196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a machine learning approach using CatBoost regression to model Z-interference (Z-INF) effects in scaled 3-D <sc>nand</small> flash memory. As vertical integration of word-lines (WLs) increases bit density, pitch scaling intensifies cell-to-cell interference, widening threshold voltage (<inline-formula> <tex-math>${V}_{\\\\text {th}}\\\\text {)}$ </tex-math></inline-formula> distributions, and reducing sensing margins. Conventional TCAD simulations and exponential function fitting can handle two-parameter relationships but cannot adequately model multiple variables affecting Z-INF. Our proposed three-parameter model incorporates both initial and final states of attack cells with victim cell characteristics, while maintaining extensibility for additional factors at smaller cell dimensions. Experimental results confirm that the model accurately predicts <inline-formula> <tex-math>${V}_{\\\\text {th}}$ </tex-math></inline-formula> distribution changes across various WL geometries with improved computational efficiency. Analysis shows Z-INF increases 4–5 times when oxide/nitride (ON) pitch decreases from 50 to 40 nm, with critical degradation below 45 nm. The model successfully accounts for process variations and identifies scaling thresholds, providing insights for reliability improvement and error correction in advanced 3-D <sc>nand</small> architectures.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 9\",\"pages\":\"4851-4855\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11099092/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11099092/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种机器学习方法,使用CatBoost回归来模拟缩放三维nand闪存中的z -干扰(Z-INF)效应。随着字行(WLs)的垂直整合增加比特密度,基音尺度增强了细胞间的干扰,扩大了阈值电压(${V}_{\text {th}}\text{)}$分布,并减少了感知边界。传统的TCAD仿真和指数函数拟合可以处理双参数关系,但不能充分模拟影响Z-INF的多个变量。我们提出的三参数模型结合了具有受害者细胞特征的攻击细胞的初始和最终状态,同时在较小的细胞维度上保持了对其他因素的可扩展性。实验结果表明,该模型准确预测了${V}_{\text {th}}$分布在各种WL几何形状上的变化,提高了计算效率。分析表明,当氧化物/氮化物(ON)间距从50 nm减小到40 nm时,Z-INF增加4-5倍,在45 nm以下发生临界降解。该模型成功地解释了工艺变化并确定了缩放阈值,为先进的3d nand架构的可靠性改进和纠错提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CatBoost-Based Z-Interference Modeling for Accurate Prediction of Threshold Voltage Distribution in Scaled 3-D NAND Flash
This article presents a machine learning approach using CatBoost regression to model Z-interference (Z-INF) effects in scaled 3-D nand flash memory. As vertical integration of word-lines (WLs) increases bit density, pitch scaling intensifies cell-to-cell interference, widening threshold voltage ( ${V}_{\text {th}}\text {)}$ distributions, and reducing sensing margins. Conventional TCAD simulations and exponential function fitting can handle two-parameter relationships but cannot adequately model multiple variables affecting Z-INF. Our proposed three-parameter model incorporates both initial and final states of attack cells with victim cell characteristics, while maintaining extensibility for additional factors at smaller cell dimensions. Experimental results confirm that the model accurately predicts ${V}_{\text {th}}$ distribution changes across various WL geometries with improved computational efficiency. Analysis shows Z-INF increases 4–5 times when oxide/nitride (ON) pitch decreases from 50 to 40 nm, with critical degradation below 45 nm. The model successfully accounts for process variations and identifies scaling thresholds, providing insights for reliability improvement and error correction in advanced 3-D nand architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信