Schottky-Gate p-GaN HEMT在不同状态下的ESD鲁棒性

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yijun Shi;Dongsheng Zhao;Zhipeng Shen;Lijuan Wu;Liang He;Xingchuan Jiang;Guanglin Yang;Qingzong Xiao;Xinghuan Chen;Yuan Chen;Guoguang Lu
{"title":"Schottky-Gate p-GaN HEMT在不同状态下的ESD鲁棒性","authors":"Yijun Shi;Dongsheng Zhao;Zhipeng Shen;Lijuan Wu;Liang He;Xingchuan Jiang;Guanglin Yang;Qingzong Xiao;Xinghuan Chen;Yuan Chen;Guoguang Lu","doi":"10.1109/TED.2025.3592633","DOIUrl":null,"url":null,"abstract":"This work systematically investigates the electrostatic discharge (ESD) robustness of Schottky-gate p-GaN high electron mobility transistors (HEMTs) under different gate and drain bias conditions. Gate-terminal ESD robustness is severely compromised under high <inline-formula> <tex-math>${V}_{\\text {DS}}$ </tex-math></inline-formula> (<inline-formula> <tex-math>$\\ge 40$ </tex-math></inline-formula> V), where synergistic high voltage/current induces thermal runaway, causing irreversible damage. At <inline-formula> <tex-math>${V}_{\\text {DS}} =5$ </tex-math></inline-formula>–30 V, trap-dominated <inline-formula> <tex-math>${V}_{\\text {TH}}$ </tex-math></inline-formula> shifts (up to 0.68 V) correlate with <inline-formula> <tex-math>$1200\\times {N}_{\\text {it0}}$ </tex-math></inline-formula> increases, partially recoverable over time. With the drain in the floating state, the trap-dominated <inline-formula> <tex-math>${V}_{\\text {TH}}$ </tex-math></inline-formula> shift (about 0.47 V) correlate with <inline-formula> <tex-math>$140\\times {N}_{\\text {it}}$ </tex-math></inline-formula> increases, nearly fully recoverable over time. Under the drain-terminal ESD events, the device with the gate in floating state exhibits superior ESD robustness, accompanied by only a 0.12-V negative <inline-formula> <tex-math>${V} _{\\text {TH}}$ </tex-math></inline-formula> shift and high <inline-formula> <tex-math>${V}_{\\text {HBM}}$ </tex-math></inline-formula> of over 8.61 kV. The devices with gate biased at off/semi-on/on states achieve <inline-formula> <tex-math>${V}_{\\text {HBM}}$ </tex-math></inline-formula> from 0.27 to 30 kV, with (semi-on) on-state configurations meeting 2-kV industrial standards. This work bridges the gap in understanding multistress ESD interactions, providing critical insights for optimizing p-GaN HEMT reliability.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 9","pages":"4810-4816"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ESD Robustness of Schottky-Gate p-GaN HEMT Under Different States\",\"authors\":\"Yijun Shi;Dongsheng Zhao;Zhipeng Shen;Lijuan Wu;Liang He;Xingchuan Jiang;Guanglin Yang;Qingzong Xiao;Xinghuan Chen;Yuan Chen;Guoguang Lu\",\"doi\":\"10.1109/TED.2025.3592633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work systematically investigates the electrostatic discharge (ESD) robustness of Schottky-gate p-GaN high electron mobility transistors (HEMTs) under different gate and drain bias conditions. Gate-terminal ESD robustness is severely compromised under high <inline-formula> <tex-math>${V}_{\\\\text {DS}}$ </tex-math></inline-formula> (<inline-formula> <tex-math>$\\\\ge 40$ </tex-math></inline-formula> V), where synergistic high voltage/current induces thermal runaway, causing irreversible damage. At <inline-formula> <tex-math>${V}_{\\\\text {DS}} =5$ </tex-math></inline-formula>–30 V, trap-dominated <inline-formula> <tex-math>${V}_{\\\\text {TH}}$ </tex-math></inline-formula> shifts (up to 0.68 V) correlate with <inline-formula> <tex-math>$1200\\\\times {N}_{\\\\text {it0}}$ </tex-math></inline-formula> increases, partially recoverable over time. With the drain in the floating state, the trap-dominated <inline-formula> <tex-math>${V}_{\\\\text {TH}}$ </tex-math></inline-formula> shift (about 0.47 V) correlate with <inline-formula> <tex-math>$140\\\\times {N}_{\\\\text {it}}$ </tex-math></inline-formula> increases, nearly fully recoverable over time. Under the drain-terminal ESD events, the device with the gate in floating state exhibits superior ESD robustness, accompanied by only a 0.12-V negative <inline-formula> <tex-math>${V} _{\\\\text {TH}}$ </tex-math></inline-formula> shift and high <inline-formula> <tex-math>${V}_{\\\\text {HBM}}$ </tex-math></inline-formula> of over 8.61 kV. The devices with gate biased at off/semi-on/on states achieve <inline-formula> <tex-math>${V}_{\\\\text {HBM}}$ </tex-math></inline-formula> from 0.27 to 30 kV, with (semi-on) on-state configurations meeting 2-kV industrial standards. This work bridges the gap in understanding multistress ESD interactions, providing critical insights for optimizing p-GaN HEMT reliability.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 9\",\"pages\":\"4810-4816\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11121856/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11121856/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文系统地研究了肖特基栅p-GaN高电子迁移率晶体管(hemt)在不同栅极和漏极偏置条件下的静电放电稳健性。在高${V}_{\text {DS}}$ ($\ge 40$ V)条件下,栅极端的ESD稳健性严重受损,其中协同高电压/电流引起热失控,造成不可逆的损坏。在${V}_{\text {DS}} =5$ -30 V时,陷阱主导的${V}_{\text {TH}}$移位(高达0.68 V)与$1200\倍{N}_{\text {it0}}$增加相关,部分随时间可恢复。当漏极处于浮动状态时,陷阱主导的${V}_{\text {TH}}$移位(约0.47 V)与$140\倍{N}_{\text {it}}$增加相关,随着时间的推移几乎完全可恢复。在漏极ESD事件下,栅极处于浮态的器件表现出优异的ESD稳健性,仅伴随着0.12 V的负${V}_{\text {TH}}$移位和超过8.61 kV的高${V}_{\text {HBM}}$。栅极偏置在关/半开/开状态的器件实现${V}_{\text {HBM}}$从0.27到30 kV,(半开)导通状态配置符合2 kV工业标准。这项工作填补了理解多应力ESD相互作用的空白,为优化p-GaN HEMT可靠性提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The ESD Robustness of Schottky-Gate p-GaN HEMT Under Different States
This work systematically investigates the electrostatic discharge (ESD) robustness of Schottky-gate p-GaN high electron mobility transistors (HEMTs) under different gate and drain bias conditions. Gate-terminal ESD robustness is severely compromised under high ${V}_{\text {DS}}$ ( $\ge 40$ V), where synergistic high voltage/current induces thermal runaway, causing irreversible damage. At ${V}_{\text {DS}} =5$ –30 V, trap-dominated ${V}_{\text {TH}}$ shifts (up to 0.68 V) correlate with $1200\times {N}_{\text {it0}}$ increases, partially recoverable over time. With the drain in the floating state, the trap-dominated ${V}_{\text {TH}}$ shift (about 0.47 V) correlate with $140\times {N}_{\text {it}}$ increases, nearly fully recoverable over time. Under the drain-terminal ESD events, the device with the gate in floating state exhibits superior ESD robustness, accompanied by only a 0.12-V negative ${V} _{\text {TH}}$ shift and high ${V}_{\text {HBM}}$ of over 8.61 kV. The devices with gate biased at off/semi-on/on states achieve ${V}_{\text {HBM}}$ from 0.27 to 30 kV, with (semi-on) on-state configurations meeting 2-kV industrial standards. This work bridges the gap in understanding multistress ESD interactions, providing critical insights for optimizing p-GaN HEMT reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信