新生儿和成人体外循环离心泵的流体动力学比较

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Silvia Bozzi , Silvia Colombo , Federica Bisconti , Paolo Fontanili , Marco Corbelli , Filippo Consolo , Giuseppe Passoni , Alberto C.L. Redaelli
{"title":"新生儿和成人体外循环离心泵的流体动力学比较","authors":"Silvia Bozzi ,&nbsp;Silvia Colombo ,&nbsp;Federica Bisconti ,&nbsp;Paolo Fontanili ,&nbsp;Marco Corbelli ,&nbsp;Filippo Consolo ,&nbsp;Giuseppe Passoni ,&nbsp;Alberto C.L. Redaelli","doi":"10.1016/j.medengphy.2025.104422","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Cardiopulmonary bypass (CPB) plays a crucial role in cardiac surgery, with the pump being a key component affecting both hemolysis and thrombosis. Centrifugal levitating pumps (CP) have demonstrated superiority over roller pumps due to reduced hemolysis, but thrombotic risk remains a concern. Nonetheless, there exists a technological gap for newborn patients, with only two approved centrifugal pumps specifically tailored for their needs. Consequently, pumps originally designed for adults are often employed as substitutes for paediatric patients. However, the mismatch between pump characteristics and paediatric physiology can lead to issues like blood dilution, increased shear stress, and suboptimal performance.</div></div><div><h3>Methods</h3><div>This study investigates the hemodynamics of an adult CP compared to a downscaled newborn CP featuring a 40% reduction in priming volume. Computational fluid dynamics is used to assess differences in flow characteristics, shear stresses, and stagnation zones, with implications for blood damage and thrombogenicity.</div></div><div><h3>Results and conclusion</h3><div>The newborn pump features notably shorter exposure times (45% lower than the adult design), reduced peak stress values, and a 20% reduction in the volume of fluid exposed to stress levels exceeding 50 Pa, suggesting a potential decrease in the risk of blood damage. Additionally, its reduced extent of stagnation zones (0.13 ml compared to 0.21 ml) indicates improved washout performance, thus lowering the risk of platelet aggregation and thrombus formation. These findings suggest that using a paediatric pump instead of an adult pump at typical flow rates for newborn patients may reduce the risk of blood damage.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"145 ","pages":"Article 104422"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing fluid dynamics of newborn and adult centrifugal pumps in cardiopulmonary bypass procedures\",\"authors\":\"Silvia Bozzi ,&nbsp;Silvia Colombo ,&nbsp;Federica Bisconti ,&nbsp;Paolo Fontanili ,&nbsp;Marco Corbelli ,&nbsp;Filippo Consolo ,&nbsp;Giuseppe Passoni ,&nbsp;Alberto C.L. Redaelli\",\"doi\":\"10.1016/j.medengphy.2025.104422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Cardiopulmonary bypass (CPB) plays a crucial role in cardiac surgery, with the pump being a key component affecting both hemolysis and thrombosis. Centrifugal levitating pumps (CP) have demonstrated superiority over roller pumps due to reduced hemolysis, but thrombotic risk remains a concern. Nonetheless, there exists a technological gap for newborn patients, with only two approved centrifugal pumps specifically tailored for their needs. Consequently, pumps originally designed for adults are often employed as substitutes for paediatric patients. However, the mismatch between pump characteristics and paediatric physiology can lead to issues like blood dilution, increased shear stress, and suboptimal performance.</div></div><div><h3>Methods</h3><div>This study investigates the hemodynamics of an adult CP compared to a downscaled newborn CP featuring a 40% reduction in priming volume. Computational fluid dynamics is used to assess differences in flow characteristics, shear stresses, and stagnation zones, with implications for blood damage and thrombogenicity.</div></div><div><h3>Results and conclusion</h3><div>The newborn pump features notably shorter exposure times (45% lower than the adult design), reduced peak stress values, and a 20% reduction in the volume of fluid exposed to stress levels exceeding 50 Pa, suggesting a potential decrease in the risk of blood damage. Additionally, its reduced extent of stagnation zones (0.13 ml compared to 0.21 ml) indicates improved washout performance, thus lowering the risk of platelet aggregation and thrombus formation. These findings suggest that using a paediatric pump instead of an adult pump at typical flow rates for newborn patients may reduce the risk of blood damage.</div></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":\"145 \",\"pages\":\"Article 104422\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453325001419\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325001419","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

体外循环(CPB)在心脏外科手术中起着至关重要的作用,泵是影响溶血和血栓形成的关键部件。离心悬浮泵(CP)已证明优于滚柱泵由于减少溶血,但血栓形成的风险仍然是一个问题。尽管如此,对于新生儿患者来说,仍然存在技术上的差距,只有两个专门为他们的需求量身定制的经批准的离心泵。因此,最初为成人设计的泵经常被用作儿科患者的替代品。然而,泵特性与儿童生理之间的不匹配可能导致血液稀释、剪切应力增加和性能不佳等问题。方法:本研究研究了成人CP与缩小后的新生儿CP的血流动力学,新生儿CP的启动体积减少了40%。计算流体动力学用于评估流动特性、剪切应力和停滞区的差异,以及对血液损伤和血栓形成的影响。结果与结论新生儿泵具有明显缩短暴露时间(比成人设计低45%),降低峰值应力值,并且暴露在超过50 Pa的压力水平下的液体体积减少20%,这表明可能降低血液损伤的风险。此外,其停滞区范围的减少(0.13 ml与0.21 ml相比)表明冲洗性能得到改善,从而降低了血小板聚集和血栓形成的风险。这些发现表明,使用儿科泵代替成人泵,以典型的流量为新生儿患者可能会降低血液损伤的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparing fluid dynamics of newborn and adult centrifugal pumps in cardiopulmonary bypass procedures

Comparing fluid dynamics of newborn and adult centrifugal pumps in cardiopulmonary bypass procedures

Background

Cardiopulmonary bypass (CPB) plays a crucial role in cardiac surgery, with the pump being a key component affecting both hemolysis and thrombosis. Centrifugal levitating pumps (CP) have demonstrated superiority over roller pumps due to reduced hemolysis, but thrombotic risk remains a concern. Nonetheless, there exists a technological gap for newborn patients, with only two approved centrifugal pumps specifically tailored for their needs. Consequently, pumps originally designed for adults are often employed as substitutes for paediatric patients. However, the mismatch between pump characteristics and paediatric physiology can lead to issues like blood dilution, increased shear stress, and suboptimal performance.

Methods

This study investigates the hemodynamics of an adult CP compared to a downscaled newborn CP featuring a 40% reduction in priming volume. Computational fluid dynamics is used to assess differences in flow characteristics, shear stresses, and stagnation zones, with implications for blood damage and thrombogenicity.

Results and conclusion

The newborn pump features notably shorter exposure times (45% lower than the adult design), reduced peak stress values, and a 20% reduction in the volume of fluid exposed to stress levels exceeding 50 Pa, suggesting a potential decrease in the risk of blood damage. Additionally, its reduced extent of stagnation zones (0.13 ml compared to 0.21 ml) indicates improved washout performance, thus lowering the risk of platelet aggregation and thrombus formation. These findings suggest that using a paediatric pump instead of an adult pump at typical flow rates for newborn patients may reduce the risk of blood damage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信