面向资源分配优化的多智能体强化学习综述

IF 13.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mohamad A. Hady, Siyi Hu, Mahardhika Pratama, Zehong Cao, Ryszard Kowalczyk
{"title":"面向资源分配优化的多智能体强化学习综述","authors":"Mohamad A. Hady,&nbsp;Siyi Hu,&nbsp;Mahardhika Pratama,&nbsp;Zehong Cao,&nbsp;Ryszard Kowalczyk","doi":"10.1007/s10462-025-11340-5","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-Agent Reinforcement Learning (MARL) has become a powerful framework for numerous real-world applications, modeling distributed decision-making and learning from interactions with complex environments. Resource Allocation Optimization (RAO) benefits significantly from MARL’s ability to tackle dynamic and decentralized contexts. MARL-based approaches are increasingly applied to RAO challenges across sectors playing a pivotal role in industry 4.0 developments. This survey provides a comprehensive review of recent MARL algorithms for RAO, encompassing core concepts, classifications, design steps and benchmarks. By outlining the current research landscape and identifying primary challenges and future directions, this survey aims to support researchers and practitioners in leveraging MARL’s potential to advance resource allocation solutions.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 11","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11340-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-agent reinforcement learning for resources allocation optimization: a survey\",\"authors\":\"Mohamad A. Hady,&nbsp;Siyi Hu,&nbsp;Mahardhika Pratama,&nbsp;Zehong Cao,&nbsp;Ryszard Kowalczyk\",\"doi\":\"10.1007/s10462-025-11340-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-Agent Reinforcement Learning (MARL) has become a powerful framework for numerous real-world applications, modeling distributed decision-making and learning from interactions with complex environments. Resource Allocation Optimization (RAO) benefits significantly from MARL’s ability to tackle dynamic and decentralized contexts. MARL-based approaches are increasingly applied to RAO challenges across sectors playing a pivotal role in industry 4.0 developments. This survey provides a comprehensive review of recent MARL algorithms for RAO, encompassing core concepts, classifications, design steps and benchmarks. By outlining the current research landscape and identifying primary challenges and future directions, this survey aims to support researchers and practitioners in leveraging MARL’s potential to advance resource allocation solutions.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 11\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-025-11340-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-025-11340-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11340-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多智能体强化学习(MARL)已经成为一个强大的框架,用于许多现实世界的应用,建模分布式决策和学习与复杂环境的交互。资源分配优化(RAO)从MARL处理动态和分散上下文的能力中受益匪浅。基于marl的方法越来越多地应用于各行各业的RAO挑战,在工业4.0的发展中发挥着关键作用。本调查提供了最近的MARL算法RAO的全面审查,包括核心概念,分类,设计步骤和基准。通过概述当前的研究前景,确定主要挑战和未来方向,本调查旨在支持研究人员和实践者利用MARL的潜力来推进资源分配解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-agent reinforcement learning for resources allocation optimization: a survey

Multi-Agent Reinforcement Learning (MARL) has become a powerful framework for numerous real-world applications, modeling distributed decision-making and learning from interactions with complex environments. Resource Allocation Optimization (RAO) benefits significantly from MARL’s ability to tackle dynamic and decentralized contexts. MARL-based approaches are increasingly applied to RAO challenges across sectors playing a pivotal role in industry 4.0 developments. This survey provides a comprehensive review of recent MARL algorithms for RAO, encompassing core concepts, classifications, design steps and benchmarks. By outlining the current research landscape and identifying primary challenges and future directions, this survey aims to support researchers and practitioners in leveraging MARL’s potential to advance resource allocation solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信