采用Ni(Pt)Si硅化优先和负载Si减薄技术优化的SOI堆叠硅纳米片栅极全能场效应管

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Lei Cao;Guanqiao Sang;Qingzhu Zhang;Jiaxin Yao;Xiaohui Zhu;Qingkun Li;Junjie Li;Jianfeng Gao;Tingting Li;Yihong Lu;Xiaobin He;Zhenhua Wu;Yongliang Li;Junfeng Li;Huaxiang Yin;Jun Luo
{"title":"采用Ni(Pt)Si硅化优先和负载Si减薄技术优化的SOI堆叠硅纳米片栅极全能场效应管","authors":"Lei Cao;Guanqiao Sang;Qingzhu Zhang;Jiaxin Yao;Xiaohui Zhu;Qingkun Li;Junjie Li;Jianfeng Gao;Tingting Li;Yihong Lu;Xiaobin He;Zhenhua Wu;Yongliang Li;Junfeng Li;Huaxiang Yin;Jun Luo","doi":"10.1109/TED.2025.3592165","DOIUrl":null,"url":null,"abstract":"In this article, to optimize the performance of silicon-on-insulator (SOI) stacked Si nanosheet (NS) gate-all-around field-effect transistor (GAAFET) with long source/drain (S/D) regions, special process techniques of Ni(Pt)Si silicide-first and Load-Si thinning are successfully integrated in the experimental devices. Because of the introduced silicide-first process, the transistor performance merits of <sc>on</small>-current (<inline-formula> <tex-math>${I}_{\\mathrm {ON}}$ </tex-math></inline-formula>) and transconductance (<inline-formula> <tex-math>${G}_{\\text {m}}$ </tex-math></inline-formula>) are also increased by 34.19% and 80.55% for the reduction of 68.66% in the S/D parasitic resistance. Meanwhile, compared to the Bulk-Si GAAFET, the gate-induced drain leakage (GIDL) current of the SOI GAAFET is also decreased by more than one order of magnitude. However, the subthreshold characteristics of SOI GAAFETs exhibit a rapid degradation as the gate length (<inline-formula> <tex-math>${L}_{\\text {g}}$ </tex-math></inline-formula>) scaling, which is mainly due to the effect of parasitic channel in the remaining Load-Si layer. To optimize the leakage and subthreshold characteristics, the electrical impacts of Load-Si thickness (<inline-formula> <tex-math>${T}_{\\text {Load-Si}}$ </tex-math></inline-formula>) are thoroughly investigated by the experiment and TCAD simulation. The experimental SOI GAAFET fabricated by thinning Load-Si to 19 nm has obtained better subthreshold characteristics, improved normalized <inline-formula> <tex-math>${I}_{\\mathrm {ON}}$ </tex-math></inline-formula>, and caused an obvious decrease of <sc>off</small>-current (<inline-formula> <tex-math>${I}_{\\mathrm {OFF}}$ </tex-math></inline-formula>) at <inline-formula> <tex-math>${L}_{\\text {g}} = {30}$ </tex-math></inline-formula> nm. Meanwhile, the simulation results further show that the SOI GAAFET with shorter <inline-formula> <tex-math>${L}_{\\text {g}}$ </tex-math></inline-formula> needs to continuously decrease <inline-formula> <tex-math>${T}_{\\text {Load-Si}}$ </tex-math></inline-formula> to meet the requirements of a fully depleted channel and low <inline-formula> <tex-math>${I}_{\\mathrm {OFF}}$ </tex-math></inline-formula>.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 9","pages":"4685-4690"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized SOI Stacked Si Nanosheet Gate-All-Around FET With Ni(Pt)Si Silicide-First and Load-Si Thinning Techniques\",\"authors\":\"Lei Cao;Guanqiao Sang;Qingzhu Zhang;Jiaxin Yao;Xiaohui Zhu;Qingkun Li;Junjie Li;Jianfeng Gao;Tingting Li;Yihong Lu;Xiaobin He;Zhenhua Wu;Yongliang Li;Junfeng Li;Huaxiang Yin;Jun Luo\",\"doi\":\"10.1109/TED.2025.3592165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, to optimize the performance of silicon-on-insulator (SOI) stacked Si nanosheet (NS) gate-all-around field-effect transistor (GAAFET) with long source/drain (S/D) regions, special process techniques of Ni(Pt)Si silicide-first and Load-Si thinning are successfully integrated in the experimental devices. Because of the introduced silicide-first process, the transistor performance merits of <sc>on</small>-current (<inline-formula> <tex-math>${I}_{\\\\mathrm {ON}}$ </tex-math></inline-formula>) and transconductance (<inline-formula> <tex-math>${G}_{\\\\text {m}}$ </tex-math></inline-formula>) are also increased by 34.19% and 80.55% for the reduction of 68.66% in the S/D parasitic resistance. Meanwhile, compared to the Bulk-Si GAAFET, the gate-induced drain leakage (GIDL) current of the SOI GAAFET is also decreased by more than one order of magnitude. However, the subthreshold characteristics of SOI GAAFETs exhibit a rapid degradation as the gate length (<inline-formula> <tex-math>${L}_{\\\\text {g}}$ </tex-math></inline-formula>) scaling, which is mainly due to the effect of parasitic channel in the remaining Load-Si layer. To optimize the leakage and subthreshold characteristics, the electrical impacts of Load-Si thickness (<inline-formula> <tex-math>${T}_{\\\\text {Load-Si}}$ </tex-math></inline-formula>) are thoroughly investigated by the experiment and TCAD simulation. The experimental SOI GAAFET fabricated by thinning Load-Si to 19 nm has obtained better subthreshold characteristics, improved normalized <inline-formula> <tex-math>${I}_{\\\\mathrm {ON}}$ </tex-math></inline-formula>, and caused an obvious decrease of <sc>off</small>-current (<inline-formula> <tex-math>${I}_{\\\\mathrm {OFF}}$ </tex-math></inline-formula>) at <inline-formula> <tex-math>${L}_{\\\\text {g}} = {30}$ </tex-math></inline-formula> nm. Meanwhile, the simulation results further show that the SOI GAAFET with shorter <inline-formula> <tex-math>${L}_{\\\\text {g}}$ </tex-math></inline-formula> needs to continuously decrease <inline-formula> <tex-math>${T}_{\\\\text {Load-Si}}$ </tex-math></inline-formula> to meet the requirements of a fully depleted channel and low <inline-formula> <tex-math>${I}_{\\\\mathrm {OFF}}$ </tex-math></inline-formula>.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 9\",\"pages\":\"4685-4690\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11103758/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11103758/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了优化具有长源漏区(S/D)的绝缘体上硅(SOI)堆叠硅纳米片(NS)栅极-全方位场效应晶体管(GAAFET)的性能,成功地将Ni(Pt)Si硅化优先和负载-Si减薄的特殊工艺技术集成到实验器件中。由于引入了硅化物优先工艺,晶体管的通流(${I}_{\ mathm {ON}}$)和跨导(${G}_{\text {m}}$)性能分别提高了34.19%和80.55%,S/D寄生电阻降低了68.66%。同时,与Bulk-Si GAAFET相比,SOI GAAFET的栅极感应漏极(GIDL)电流也降低了一个数量级以上。然而,随着栅极长度(${L}_{\text {g}}$)的缩放,SOI gaafet的亚阈值特性表现出快速的退化,这主要是由于剩余Load-Si层中寄生通道的影响。为了优化泄漏和亚阈值特性,通过实验和TCAD仿真深入研究了负载- si厚度(${T}_{\text {Load-Si}}$)的电影响。将负载- si细化至19 nm制备的SOI GAAFET获得了更好的亚阈值特性,改善了归一化后的${I}_{\mathrm {ON}}$,使${L}_{\text {g}} = {30}$ nm处的关断电流(${I}_{\mathrm {OFF}}$)明显减小。仿真结果进一步表明,较短${L}_{\text {g}}$的SOI GAAFET需要不断减小${T}_{\text {Load-Si}}$,以满足信道完全耗尽和较低${I}_{\ mathm {OFF}}$的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized SOI Stacked Si Nanosheet Gate-All-Around FET With Ni(Pt)Si Silicide-First and Load-Si Thinning Techniques
In this article, to optimize the performance of silicon-on-insulator (SOI) stacked Si nanosheet (NS) gate-all-around field-effect transistor (GAAFET) with long source/drain (S/D) regions, special process techniques of Ni(Pt)Si silicide-first and Load-Si thinning are successfully integrated in the experimental devices. Because of the introduced silicide-first process, the transistor performance merits of on-current ( ${I}_{\mathrm {ON}}$ ) and transconductance ( ${G}_{\text {m}}$ ) are also increased by 34.19% and 80.55% for the reduction of 68.66% in the S/D parasitic resistance. Meanwhile, compared to the Bulk-Si GAAFET, the gate-induced drain leakage (GIDL) current of the SOI GAAFET is also decreased by more than one order of magnitude. However, the subthreshold characteristics of SOI GAAFETs exhibit a rapid degradation as the gate length ( ${L}_{\text {g}}$ ) scaling, which is mainly due to the effect of parasitic channel in the remaining Load-Si layer. To optimize the leakage and subthreshold characteristics, the electrical impacts of Load-Si thickness ( ${T}_{\text {Load-Si}}$ ) are thoroughly investigated by the experiment and TCAD simulation. The experimental SOI GAAFET fabricated by thinning Load-Si to 19 nm has obtained better subthreshold characteristics, improved normalized ${I}_{\mathrm {ON}}$ , and caused an obvious decrease of off-current ( ${I}_{\mathrm {OFF}}$ ) at ${L}_{\text {g}} = {30}$ nm. Meanwhile, the simulation results further show that the SOI GAAFET with shorter ${L}_{\text {g}}$ needs to continuously decrease ${T}_{\text {Load-Si}}$ to meet the requirements of a fully depleted channel and low ${I}_{\mathrm {OFF}}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信