{"title":"利用达林顿级联三量子阱异质结双极发光晶体管的超高热敏度","authors":"Mukul Kumar;Chao-Hsin Wu","doi":"10.1109/TED.2025.3591573","DOIUrl":null,"url":null,"abstract":"This study introduces a novel approach to enhance the current sensing capabilities of triple quantum-well heterojunction bipolar transistors (TQW-HBTs) through a cascaded Darlington transistor pair configuration. The circuit, comprising two intricately designed TQW-HBTs, is thoroughly investigated for its temperature-dependent collector current behavior across substrate temperatures ranging from <inline-formula> <tex-math>$25~^{\\circ }$ </tex-math></inline-formula>C to <inline-formula> <tex-math>$85~^{\\circ }$ </tex-math></inline-formula>C. The Darlington configuration significantly amplifies the low sensing current of the TQW-HBT, achieving a current gain of 1.59 at <inline-formula> <tex-math>$25~^{\\circ }$ </tex-math></inline-formula>C and 1.83 at <inline-formula> <tex-math>$85~^{\\circ }$ </tex-math></inline-formula>C under a common bias of <inline-formula> <tex-math>${V}_{\\text {CE}}$ </tex-math></inline-formula> of 3.6 V and <inline-formula> <tex-math>${I}_{\\text {B}}$ </tex-math></inline-formula> of 1 mA. The TQW-HBT exhibits an increase in current gain from 0.37 to 0.94 as the temperature rises from <inline-formula> <tex-math>$25~^{\\circ }$ </tex-math></inline-formula>C to <inline-formula> <tex-math>$85~^{\\circ }$ </tex-math></inline-formula>C, while the Darlington transistor achieves a larger increase in current gain from 0.59 to 1.71 under the same conditions. At <inline-formula> <tex-math>$25~^{\\circ }$ </tex-math></inline-formula>C, the current sensitivity of the TQW-HBT is measured at <inline-formula> <tex-math>$5.74~\\mu $ </tex-math></inline-formula>A/°C, while the Darlington transistor demonstrates a higher sensitivity of <inline-formula> <tex-math>$10.15~\\mu $ </tex-math></inline-formula>A/°C. As the temperature reaches <inline-formula> <tex-math>$85~^{\\circ }$ </tex-math></inline-formula>C, these sensitivities further increase to <inline-formula> <tex-math>$12.86~\\mu $ </tex-math></inline-formula>A/°C for the TQW-HBT and <inline-formula> <tex-math>$27~\\mu $ </tex-math></inline-formula>A/°C for the Darlington transistor. Additionally, the circuit allows for the current-to-voltage conversion, achieving a maximum voltage sensitivity of 16.07 mV/°C at <inline-formula> <tex-math>$85~^{\\circ }$ </tex-math></inline-formula>C, with <inline-formula> <tex-math>${V}_{\\text {DD}}$ </tex-math></inline-formula> of 4 V and <inline-formula> <tex-math>${I}_{B}$ </tex-math></inline-formula> of 1 mA. These results highlight the superior performance of the TQW-HBT cascaded Darlington transistor over conventional bipolar-based temperature sensors, positioning it as a promising candidate for the next-generation ultrahigh-sensitivity thermal sensor technologies.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 9","pages":"5146-5153"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh Thermal Sensitivity Using a Darlington-Cascaded Triple-Quantum-Well Heterojunction Bipolar Light-Emitting Transistors\",\"authors\":\"Mukul Kumar;Chao-Hsin Wu\",\"doi\":\"10.1109/TED.2025.3591573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a novel approach to enhance the current sensing capabilities of triple quantum-well heterojunction bipolar transistors (TQW-HBTs) through a cascaded Darlington transistor pair configuration. The circuit, comprising two intricately designed TQW-HBTs, is thoroughly investigated for its temperature-dependent collector current behavior across substrate temperatures ranging from <inline-formula> <tex-math>$25~^{\\\\circ }$ </tex-math></inline-formula>C to <inline-formula> <tex-math>$85~^{\\\\circ }$ </tex-math></inline-formula>C. The Darlington configuration significantly amplifies the low sensing current of the TQW-HBT, achieving a current gain of 1.59 at <inline-formula> <tex-math>$25~^{\\\\circ }$ </tex-math></inline-formula>C and 1.83 at <inline-formula> <tex-math>$85~^{\\\\circ }$ </tex-math></inline-formula>C under a common bias of <inline-formula> <tex-math>${V}_{\\\\text {CE}}$ </tex-math></inline-formula> of 3.6 V and <inline-formula> <tex-math>${I}_{\\\\text {B}}$ </tex-math></inline-formula> of 1 mA. The TQW-HBT exhibits an increase in current gain from 0.37 to 0.94 as the temperature rises from <inline-formula> <tex-math>$25~^{\\\\circ }$ </tex-math></inline-formula>C to <inline-formula> <tex-math>$85~^{\\\\circ }$ </tex-math></inline-formula>C, while the Darlington transistor achieves a larger increase in current gain from 0.59 to 1.71 under the same conditions. At <inline-formula> <tex-math>$25~^{\\\\circ }$ </tex-math></inline-formula>C, the current sensitivity of the TQW-HBT is measured at <inline-formula> <tex-math>$5.74~\\\\mu $ </tex-math></inline-formula>A/°C, while the Darlington transistor demonstrates a higher sensitivity of <inline-formula> <tex-math>$10.15~\\\\mu $ </tex-math></inline-formula>A/°C. As the temperature reaches <inline-formula> <tex-math>$85~^{\\\\circ }$ </tex-math></inline-formula>C, these sensitivities further increase to <inline-formula> <tex-math>$12.86~\\\\mu $ </tex-math></inline-formula>A/°C for the TQW-HBT and <inline-formula> <tex-math>$27~\\\\mu $ </tex-math></inline-formula>A/°C for the Darlington transistor. Additionally, the circuit allows for the current-to-voltage conversion, achieving a maximum voltage sensitivity of 16.07 mV/°C at <inline-formula> <tex-math>$85~^{\\\\circ }$ </tex-math></inline-formula>C, with <inline-formula> <tex-math>${V}_{\\\\text {DD}}$ </tex-math></inline-formula> of 4 V and <inline-formula> <tex-math>${I}_{B}$ </tex-math></inline-formula> of 1 mA. These results highlight the superior performance of the TQW-HBT cascaded Darlington transistor over conventional bipolar-based temperature sensors, positioning it as a promising candidate for the next-generation ultrahigh-sensitivity thermal sensor technologies.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 9\",\"pages\":\"5146-5153\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11099095/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11099095/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Ultrahigh Thermal Sensitivity Using a Darlington-Cascaded Triple-Quantum-Well Heterojunction Bipolar Light-Emitting Transistors
This study introduces a novel approach to enhance the current sensing capabilities of triple quantum-well heterojunction bipolar transistors (TQW-HBTs) through a cascaded Darlington transistor pair configuration. The circuit, comprising two intricately designed TQW-HBTs, is thoroughly investigated for its temperature-dependent collector current behavior across substrate temperatures ranging from $25~^{\circ }$ C to $85~^{\circ }$ C. The Darlington configuration significantly amplifies the low sensing current of the TQW-HBT, achieving a current gain of 1.59 at $25~^{\circ }$ C and 1.83 at $85~^{\circ }$ C under a common bias of ${V}_{\text {CE}}$ of 3.6 V and ${I}_{\text {B}}$ of 1 mA. The TQW-HBT exhibits an increase in current gain from 0.37 to 0.94 as the temperature rises from $25~^{\circ }$ C to $85~^{\circ }$ C, while the Darlington transistor achieves a larger increase in current gain from 0.59 to 1.71 under the same conditions. At $25~^{\circ }$ C, the current sensitivity of the TQW-HBT is measured at $5.74~\mu $ A/°C, while the Darlington transistor demonstrates a higher sensitivity of $10.15~\mu $ A/°C. As the temperature reaches $85~^{\circ }$ C, these sensitivities further increase to $12.86~\mu $ A/°C for the TQW-HBT and $27~\mu $ A/°C for the Darlington transistor. Additionally, the circuit allows for the current-to-voltage conversion, achieving a maximum voltage sensitivity of 16.07 mV/°C at $85~^{\circ }$ C, with ${V}_{\text {DD}}$ of 4 V and ${I}_{B}$ of 1 mA. These results highlight the superior performance of the TQW-HBT cascaded Darlington transistor over conventional bipolar-based temperature sensors, positioning it as a promising candidate for the next-generation ultrahigh-sensitivity thermal sensor technologies.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.