图的a α-矩阵的极限点

IF 1.1 3区 数学 Q1 MATHEMATICS
Elismar R. Oliveira, Vilmar Trevisan
{"title":"图的a α-矩阵的极限点","authors":"Elismar R. Oliveira,&nbsp;Vilmar Trevisan","doi":"10.1016/j.laa.2025.08.014","DOIUrl":null,"url":null,"abstract":"<div><div>We study limit points of the spectral radii of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-matrices of graphs. Adapting a method used by J. B. Shearer in 1989, we prove a density property of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-limit points of caterpillars for <em>α</em> close to zero. Precisely, we show that for <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span> there exists a positive number <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>α</mi><mo>)</mo><mo>&gt;</mo><mn>2</mn></math></span> such that any value <span><math><mi>λ</mi><mo>&gt;</mo><msub><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>α</mi><mo>)</mo></math></span> is an <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-limit point. We also determine other intervals whose numbers are all <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-limit points.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 1-25"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit points of Aα-matrices of graphs\",\"authors\":\"Elismar R. Oliveira,&nbsp;Vilmar Trevisan\",\"doi\":\"10.1016/j.laa.2025.08.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study limit points of the spectral radii of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-matrices of graphs. Adapting a method used by J. B. Shearer in 1989, we prove a density property of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-limit points of caterpillars for <em>α</em> close to zero. Precisely, we show that for <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span> there exists a positive number <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>α</mi><mo>)</mo><mo>&gt;</mo><mn>2</mn></math></span> such that any value <span><math><mi>λ</mi><mo>&gt;</mo><msub><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>α</mi><mo>)</mo></math></span> is an <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-limit point. We also determine other intervals whose numbers are all <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-limit points.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"728 \",\"pages\":\"Pages 1-25\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525003507\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003507","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了图a α-矩阵谱半径的极限点。采用Shearer(1989)的一种方法,证明了当α趋近于零时毛虫的a α极限点的密度性质。准确地说,我们证明了对于α∈[0,12],存在一个正数τ2(α)>2,使得任意值λ>;τ2(α)是a α-极限点。我们还确定了其他区间,它们的个数都是a α-极限点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit points of Aα-matrices of graphs
We study limit points of the spectral radii of Aα-matrices of graphs. Adapting a method used by J. B. Shearer in 1989, we prove a density property of Aα-limit points of caterpillars for α close to zero. Precisely, we show that for α[0,12) there exists a positive number τ2(α)>2 such that any value λ>τ2(α) is an Aα-limit point. We also determine other intervals whose numbers are all Aα-limit points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信